

Diogo Silveira Mendonça

Pattern-Driven Maintenance: A Method to Prevent

Unhandled Latent Exceptions in Web Applications

Tese de Doutorado

Thesis presented to the Programa de Pós-graduação
em Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Ciências -
Informática.

Advisor: Marcos Kalinowski
Co-advisor: Arndt von Staa

Rio de Janeiro, March 2019

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Diogo Silveira Mendonça

Pattern-Driven Maintenance: A Method to Prevent

Unhandled Latent Exceptions in Web Applications

Thesis presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Doutor em Ciências -
Informática. Approved by the Examination Committee.

Marcos Kalinowski
Advisor

Departamento de Informática – PUC-Rio

Arndt von Staa
Co-advisor

Departamento de Informática – PUC-Rio

Alessandro Fabricio Garcia
Departamento de Informática – PUC-Rio

Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Guilherme Horta Travassos
UFRJ

Leonardo Gresta Paulino Murta
UFF

Rio de Janeiro, March 21th, 2019

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

All rights reserved.

Diogo Silveira Mendonça

Diogo Silveira Mendonça received his Bachelor degree in

Computer Science from the Federal University of Rio de

Janeiro (UFRJ) in 2006. He received his Master degree in

Informatics from the Pontical Catholic University of Rio de

Janeiro (PUC-Rio) in 2008. His main research interests are

Software Engineering, Software Product Quality.

 Ficha Catalográfica

 CDD: 004

Mendonça, Diogo Silveira

 Pattern-driven maintenance : a method to prevent unhandled latent
exceptions in web applications / Diogo Silveira Mendonça ; advisor:
Marcos Kalinowski ; co-advisor: Arndt von Staa. – 2019.
 128 f. : il. color. ; 30 cm

 Tese (doutorado)–Pontifícia Universidade Católica do Rio de
Janeiro, Departamento de Informática, 2019.
 Inclui bibliografia

 1. Informática – Teses. 2. Manutenção de aplicações web. 3.
Exceções não tratadas. 4. Confiabilidade. 5. Padrões. 6. Análise
estática. I. Kalinowski, Marcos. II. Staa, Arndt von. III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. IV. Título.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

To my parents, Aparecida and Eron,

my wife Taliha,

and my daughter Iasmin.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Acknowledgments

I would like to thank my advisors, without their dedication and hard work this

thesis would not have been possible. To Professor Arndt von Staa, by his celerity,

sense of practice, rigor, and his vast knowledge in software engineering that was

applied during this thesis. To Professor Marcos Kalinowski by his ideas, technical

advises, and detailed revisions that provided a different and differentiated

perspective in this thesis.

I would like to thank my family, which supports me to achieve my objectives,

including to conclude this thesis. To my parents, Aparecida and Eron, for always

support, encourage, and help me whatever it takes. To my wife Taliha, by always

being by my side, being my lifemate, and filling my heart with your love. To my

daughter, Iasmin, to be the joy of my life. To my parents in law, Deise and Paulo,

by staying with my daughter many times while I had been working in this thesis

(to my mother and wife also for this). To my sister Michele, for the funny talks

that we had, helping me cheer me up. To my sister in law Laiza, by always

helping us when we have health problems.

I would like to thank the professional of CEFET/RJ, which from goodwill,

directly contributed to this thesis. To Julliany Sales Brandão and Elielson Ribeiro,

as chiefs of DTINF in different periods of time, allowed me to use of information

systems of CEFET/RJ in this thesis. To the system analysists of DTINF that

cooperated with this research, they are Daniel Oliveira, Tarcila Silva, Taiana

Pereira, Enoch Cezar, and Marcio Ferreira.

I thank CNPq, for the financial support without which this work would not have

been possible.

I thank all the members of the examining committee.

I thank all the professors of the informatics department of PUC-Rio, and the

professor Guilherme Travassos from COPPE/UFRJ, for sharing their vast

knowledge.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Abstract

Mendonça, Diogo Silveira. Pattern-Driven Maintenance: A Method to

Prevent Unhandled Latent Exceptions in Web Applications. Rio de

Janeiro, 2019. 128p. PhD Thesis - Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

Background: Unhandled exceptions affect the reliability, usability, and

security of web applications. Several studies have measured the reliability of web

applications in use against unhandled exceptions, showing a recurrence of the

problem during the maintenance phase. Detecting automatically unhandled latent

exceptions is difficult and application-specific. Hence, general approaches to deal

with defects in web applications do not treat unhandled exceptions appropriately.

Aims: To design and evaluate a method that can support finding, correcting, and

preventing unhandled exceptions in web applications. Method: We applied the

design science engineering cycle to design a method called Pattern-Driven

Maintenance (PDM). PDM relies on identifying defect patterns based on

application server logs and producing static analysis rules that can be used for

prevention. We applied PDM to two industrial web applications involving

different companies and technologies, measuring the reliability improvement and

the precision of the produced static analysis rules. We also evaluated reuse of

static analysis rules produced during PDM application on within- and cross-

company software. Finally, we studied the effectiveness and acceptance of novice

maintainers on applying the PDM method Results: In both industry cases, our

approach allowed identifying defect patterns and finding unhandled latent

exceptions to be fixed in the source code, enabling to eliminate the pattern-related

failures and improving the application reliability completely. Some of the static

analysis rules produced by PDM application were reused on within- and cross-

company software. We identified knowledge and experiences that influence on

effectively applying steps of the PDM method. Most of the novice maintainers

find PDM useful, but not easy to apply, thus hindering PDM acceptance among

novices. Conclusions: The results strengthen our confidence that PDM can help

maintainers to improve the reliability for unhandled exceptions in existing web

applications. We provide guidance on how to apply PDM, reuse the produced

static analysis rules, and the knowledge and experiences needed to apply the PDM

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

method effectively.

Keywords

Maintenance of Web Applications; Unhandled Latent Exceptions;

Reliability; Patterns; Static Analysis.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Resumo

Mendonça, Diogo Silveira. Manutenção Orientada a Padrões: Um

Método para Prevenir Exceções Latentes Não Tratadas em Aplicações

Web. Rio de Janeiro, 2019. 128p. Tese de Doutorado - Departamento de

Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Contexto: Exceções não tratadas afetam a confiabilidade, usabilidade e

segurança em aplicações web. Diversos estudos mediram a confiabilidade de

aplicações web em uso em relação a exceções não tratadas, mostrando a

recorrência deste problema durante a fase de manutenção. Detectar exceções não

tratadas latentes de forma automatizada é uma tarefa difícil e específica de cada

aplicação. Assim, abordagens gerais para tratar defeitos em aplicações web não

tratam exceções não tratadas latentes apropriadamente. Objetivos: Projetar e

avaliar um método que possa suportar encontrar, corrigir e prevenir exceções não

tratadas em aplicações web. Método: Nós aplicamos o ciclo de engenharia do

design science para projetar o método chamada Manutenção Orientada a Padrões

(PDM). PDM consiste em identificar padrões de defeitos se baseando nos logs do

servidor de aplicação, produzindo regras de análise estática que podem ser

utilizadas para a prevenção de defeitos. Nós aplicamos PDM em duas aplicações

web na indústria envolvendo empresas e tecnologias diferentes, medindo a

melhoria confiabilidade das aplicações e a precisão das regras de análise estática

produzidas. Nós também avaliamos o reuso das regras de análise estática

produzidas durante a aplicação do PDM em software da mesma empresa e de

outras empresas. Finalmente, nós estudamos a eficácia e aceitação de

mantenedores novatos aplicando o método PDM. Resultados: Nos dois casos

industriais, nossa abordagem permitiu a identificação de padrões de defeitos e

exceções não tratadas latentes para correção no código fonte, permitindo eliminar

completamente as falhas relacionadas a exceções não tratadas latentes e

melhorando assim a confiabilidade da aplicação. Algumas regras de análise

estática produzidas pela aplicação do método PDM foram reutilizadas em

software na mesma empresa e em outra empresa. Nós identificamos os

conhecimentos e experiências que influenciam em aplicar os passos do método

PDM de forma eficaz. A maior parte dos mantenedores novatos acharam o

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

método PDM útil, mas não fácil de aplicar, dificultando a aceitação do método

entre novatos. Conclusões: Os resultados fortalecem nossa confiança que o PDM

pode ajudar os mantenedores a melhorar a confiabilidade em relação a exceções

não tradadas em aplicações web existentes. Nós disponibilizamos orientações

sobre como utilizar o método, reutilizar as regras de análise estática produzidas, e

quais conhecimentos e experiências são necessárias para aplicar o PDM com

eficácia.

Palavras-chave

Manutenção de Aplicações Web; Exceções Não Tratadas; Confiabilidade;

Padrões; Análise Estática.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Table of Contents

1 Introduction 16

1.1. Context and Motivation 16

1.2. Problem Statement and Research Methodology 18

1.3. Thesis Outline 21

2 Background and Related Work 22

2.1. Introduction 22

2.2. Exceptions and web applications 22

2.3. Unhandled exceptions and reliability of web applications 23

2.4. Automated approaches for the maintenance of web applications 25

2.5. Exception handling policies and its enforcement 27

2.6. Concluding Remarks 29

3 The PDM Method 30

3.1. Introduction 30

3.2. Failure Analysis and Defect Pattern Identification 31

3.3. Static Analysis Rule Programming and Execution 33

3.4. Instance Verifying and Defect Fixing 33

3.5. Rule Evaluation 34

3.6. Context Analysis 35

3.7. Deployment and Production of Rules 36

3.8. Contingency of Rules 37

3.9. Example of PDM application 37

3.10. Concluding Remarks 42

4 Industrial Evaluations 44

4.1. Introduction 44

4.2. First Evaluation 45

4.3. Second Evaluation 49

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

4.4. Discussion 52

4.5. Threats to Validity 53

4.6. Concluding Remarks 55

5 Reuse of Rules 56

5.1. Introduction 56

5.2. Cross-company rules reuse evaluation 57

5.2.1. CADD system 57

5.2.2. Taiga 59

5.3. Within-company rules reuse evaluation 60

5.4. Discussion 62

5.5. Threats to Validity 63

5.6. Concluding Remarks 64

6 Evaluation of the Acceptance of PDM 66

6.1. Introduction 66

6.2. Planning 67

6.2.1. Goals 67

6.2.2. Participants 68

6.2.3. Experimental Materials 68

6.2.4. Tasks 73

6.2.5. Questions and Variables 74

6.2.6. Experiment Design 77

6.3. Execution 77

6.4. Results 78

6.4.1. Task 1 – Failure Analysis and Defect Pattern Identification 78

6.4.2. Task 2 - Static Analysis Rule Programming 82

6.4.3. Task 3 - Rule Evaluation and Context Analysis 83

6.4.4. TAM – Technology Acceptance Model 86

6.5. Discussion 87

6.6. Threats to Validity 89

6.7. Concluding Remarks 90

7 Conclusion 92

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

7.1. Revisiting the Thesis Contributions 93

7.2. Limitations 96

7.3. Future Work 97

8 References 98

Appendix A – Consent and Characterization Form 102

Appendix B – Error Log of SisGEE 105

Appendix C – Forms of Task 1 – Failure Analysis and Defect Pattern

Identification – Pilot Version 109

Appendix D – Forms of Task1 – Failure Analysis and Defect Pattern

Identification – Groups A and B Version 113

Appendix E – Forms of Task 2 – Static Analysis Rule Programming 117

Appendix F – Forms of Task 3 – Rule Evaluation and Context Analysis –

Pilot Version 120

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis –

Group A and B Version 124

Appendix H – TAM questionnaire used in the study 128

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

List of figures

Figure 1: The PDM method control flow 31

Figure 2: BuscaTermoAditivoServlet source code near line 49 38

Figure 3: VisualizarTermoEAditivo source code near line 43 39

Figure 4: Example of static analysis rule implemented using SonarQube 41

Figure 5: Boxplot of the profile of maintainers that correctly identified and

documented all defect patterns in task 1 (Success) and complementary group

of maintainers (other) 80

Figure 6: Boxplot of the profile of maintainers that correctly identified and

documented all fixing alternatives in task 3 (Success) and the complementary

group of maintainers (other) 85

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

List of tables

Table 1: Defect pattern identification form ... 32

Table 2: Metrics used in rule evaluation. .. 34

Table 3: Data extracted from logs during failure analysis 38

Table 4: Documentation of the defect pattern identified 39

Table 5: Alerts produced by the first version of the static analysis rule with the

results of their verification .. 40

Table 6: Defect candidates not alerted by the first version of the static analysis

rule ... 41

Table 7: Documentation of a fixing alternative found during context analysis 42

Table 8: Number of failures and defects by exception type. 46

Table 9: Results of the evaluation of the developed rules. 47

Table 10: Evaluation of the rules enhanced with the context................................ 47

Table 11: Measurements performed before and after the deployment of defect

fixing during the PDM method application. .. 48

Table 12: Defect Patterns Identified in the First PDM Validation of first validation

 ... 48

Table 13: Defect Patterns Identified in the Second PDM evaluation.................... 51

Table 14: Failures and defects according to defect patterns of the second

evaluation. ... 52

Table 15: Evaluation of the Python/Django rules in CADD system. 58

Table 16: Evaluation of the Python/Django rules in Taiga. 60

Table 17: New contexts found for Django ORM get rule in Taiga. 60

Table 18: Evaluation of the PHP rules the Registration system. 62

Table 19: Summary of PDM reuse of rules evaluation ... 62

Table 20: Pattern language wildcards and conventions .. 70

Table 21: Example of defect pattern documented using the pattern language 71

Table 22: TAM questions used in the study .. 72

Table 23: Independent variables .. 76

Table 24: Dependent variables .. 76

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Table 25: Percentage of maintainers that correctly identified defect patterns 79

Table 26: Percentage of maintainers that correctly documented defect patterns .. 79

Table 27: Results of Wilcoxon-Mann-Whitney tests between Success and Other

groups in task 1 (n1=8, n2=31, one-tailed) ... 81

Table 28: Most frequent difficulties of maintainers in Task 1 81

Table 29: Most frequent difficulties of maintainers on task2 82

Table 30: Percentage of maintainers that correctly identified fixing alternatives . 83

Table 31: Percentage of maintainers that correctly documented fixing alternatives

 ... 84

Table 32: Results of Wilcoxon-Mann-Whitney tests between Success and Other

groups in Task 3 (n1=3, n2=25, one-tailed) .. 84

Table 33: Most frequent difficulties of maintainers on task 3 85

Table 34: Percentage of maintainers that strongly agree or agree with TAM

questions regarding PDM method. .. 86

Table 35: Defect patterns found during the thesis with the evaluation of static

analysis rules produced ... 94

Table 36: Papers produced among the thesis .. 95

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

1 Introduction

1.1. Context and Motivation

Maintenance is the most costly phase in the software lifecycle (BOURQUE;

FAIRLEY; OTHERS, 2014). Defect prevention and correction activities consume

part of these resources. Additionally, the impact of failures in software in use can

range from slight inconvenience to severe damage, including economic ones

(JONES; BONSIGNOUR, 2011). Among those failures are the ones generated by

exceptions that are not handled by the application, i.e., unhandled exceptions.

Unhandled exceptions can affect software reliability, usability, and security.

The reliability of a system is its ability to perform their required functions under

stated conditions for a specific period of time (ISO, 2010). Reliability is affected

when an exception is not handled correctly. Indeed, exception handling is a

requirement for reliable web applications. Usability may also be affected;

typically users do not receive proper messages to deal with the exceptional

situation when it occurs. Furthermore, unhandled exceptions are listed as a

common software weakness (CSW-248)1, which if exploited by attackers may

affect software availability and confidentiality2.

In web applications, the web server logs into the error log, among other

failures, those generated by unhandled exceptions. They can be identified by the

HTTP return code 500 in the web server access log. Those logs have been

previously used to measure the reliability of several web applications

(KALLEPALLI; TIAN, 2001; GOŠEVA-POPSTOJANOVA et al., 2006),

showing the recurrent occurrence of unhandled exceptions. However, the logs

record only the unhandled exceptions thrown during software use. Hence, even if

unhandled exceptions are not registered in the log, it is still possible for the web

application to have source code that lacks exception handling, but that has not

1 http://cwe.mitre.org/data/definitions/248.html

2 http://capec.mitre.org/data/definitions/54.html

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Introduction 17

thrown exceptions yet. Throughout this thesis, we refer to this type of source code

problem as unhandled latent exceptions.

There are some simplistic solutions to handle latent exceptions in existing

web applications. In some technologies, such as Java Enterprise Edition, it is

possible to implement a generic exception handler at the server-side of web

applications. This type of handler catches all exceptions and presents a general

error message within an error page. However, general exception handling does not

provide proper error messages to the users, preventing them from taking

recovering actions, thus affecting software usability. This kind of exception

handling does not mitigate possible business losses caused by failures. Another

solution would be handling all possible exceptions by adding specific handlers to

all source code locations that might potentially throw exceptions. However, this

solution may result in useless code (handlers that might never be used in practice)

and have a high cost due to many source code locations to change and test.

Additionally, changing code unnecessarily represents a waste of resources and

might introduce new defects.

Training maintainers and inspecting source code to enforce exception-

handling policies may be useful for dealing with unhandled latent exceptions.

However, process-based approaches need continuous effort to be effective. People

need to be retrained periodically, as well as new project members, and new source

code that is coming from software evolution needs to be inspected. Automated

approaches, on the other hand, might avoid this continuous effort expenditure by

locating and alerting maintainers about unhandled latent exceptions. However,

there are some challenges to locate unhandled latent exceptions automatically.

Identifying unhandled latent exceptions is an application-specific task. Each

application has its own exception handling policies and architecture, which define

when and where to handle exceptions. Some programming languages enable

forcing exception handling at compile time, such as Java checked exceptions,

assisting developers with this task, whereas other programming languages, such as

Python, do not assist developers in handling exceptions. Additionally, the use of

software libraries that may throw exceptions that are unknown to the developer

increases the chance of unhandled latent exceptions. These application

idiosyncrasies influence how exceptions should be handled in the application, thus

influencing the identification of unhandled exceptions.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Introduction 18

Consequently, it is difficult to detect unhandled latent exceptions

automatically. Automated approaches for testing web applications (GAROUSI et

al., 2013; DOGAN; BETIN-CAN; GAROUSI, 2014; LI; DAS; DOWE, 2014) and

locating defects using static analysis (HECKMAN; WILLIAMS, 2011; MUSKE;

SEREBRENIK, 2016) do not focus on unhandled latent exceptions, thus they are

inadequate to treat this problem. Application-specific approaches (ERSOY;

SÖZER, 2016) show only superficially how to create static analysis rules to find

application-specific defects. They also do not inform the precision of the static

analysis rules produced and how that precision can be improved.

This overall scenario motivates further investigations to help to pave the

road towards effective prevention of unhandled latent exceptions in web

applications.

1.2. Problem Statement and Research Methodology

To fail and to learn from failure are essential parts of the engineering

discipline (PETROSKI; BARATTA, 1988). In this thesis, we aim to apply this

principle to the (latent) unhandled exceptions problem, using logged failure

information as the basis for learning how to prevent them.

Using the design science (WIERINGA, 2014) template, our problem can be

stated as follows:

• Improve the reliability of web information systems that present

failures caused by unhandled operational3 exceptions

• by designing a method to automate the localization of unhandled

(operational and latent) exceptions

• that satisfies high levels of precision and recall for localization

• in order to not only fix the existing defects (operational and latent)

but also be used to prevent the reintroduction of the same type of

defect during the software evolution.

3 Unhandled operational exceptions are the exceptions which were exercised during

software operation producing a failure, while the unhandled latent exceptions are the exceptions

that may produce a failure but were not exercised in this way during software operation yet.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Introduction 19

Our research methodology to address this problem is based on the design

science engineering cycle (WIERINGA, 2014). The design science approach

starts with idealized assumptions to produce an artifact that solves a practical

problem. Afterward, engineering cycles are performed with controlled conditions,

gathering experience to improve the artifact. Each engineering cycle relaxes the

conditions of experimentation gradually by approximating them to practical

conditions. Those cycles are performed until the artifact is ready to be used in

practice.

In our case, we had some idealized assumptions drawn from our previous

experience and knowledge of the unhandled exceptions problem and its related

literature. Our assumptions at this early time were: (1) unhandled exceptions

(operational and latent) form patterns in the source code of web applications, (2)

each application has its own patterns, and (3) each specific defect pattern occurs

several times throughout the source code.

We designed a method called Pattern-Driven Maintenance (PDM) to

perform corrective and preventive maintenance of web applications against

unhandled latent exceptions. In this method, the maintainer first uses the web

server logs as sources to find software failures generated by unhandled

exceptions; then an investigation is performed on the failures and in the

application source code to identify source code patterns that trigger an unhandled

exception, i.e., a defect pattern. Once such a pattern has been identified, the

maintainer creates a static analysis rule that represents the defect pattern and uses

a static analysis tool to locate its instances. After the pattern instances are found,

they are evaluated by testing, revealing their latent defects. The testing activity not

only enables correction of the defects but also assists in improving the precision

of the static analysis rules, working as a learning cycle.

Once designed, we conducted investigations aiming to answer the following

design science knowledge questions (WIERINGA, 2014) about PDM:

RQ1. (effect) What is the software reliability improvement achieved by

fixing the located defects?

RQ2. (requirement satisfaction) What is the precision and recall of the

automated defect localization?

RQ3. (sensitivity) Which factors influence the method application and

precision of the automated defect localization?

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Introduction 20

RQ4. (sensitivity) In which scope rules created by applying PDM can be

reused?

RQ5. (effect) What are the benefits of reusing rules created by applying

PDM?

RQ6. (sensitivity) Which factors influence reusing rules created by

applying PDM?

RQ7. (requirement satisfaction) How effective are maintainers applying

PDM for preventing defects?

RQ8. (requirement satisfaction) Would maintainers accept to use PDM?

We performed three different studies to address those questions. First, we

evaluated PDM effectiveness and sensitivity in preventing unhandled latent

exceptions by applying it in two industrial cases. We measured the reliability

against unhandled exceptions of both software before and after applying PDM

(RQ1), evaluated the precision and recall of rules produced (RQ2), and reported

our perceptions on the factors that influence PDM application (RQ3).

After applying PDM in two industrial software systems, we selected other

similar software to evaluate the reuse of rules produced by the method. We

selected three software systems, one within the same company and team that we

applied PDM, and the other two with other companies and development teams.

We evaluated in which ones the rules could be reused (RQ4), as well as the

factors that influence rule reuse (RQ6). We also measured the precision of the

reused rules and discussed the benefits found by reusing PDM-produced rules

(RQ5).

Finally, we evaluated the effectiveness of novice maintainers in applying

PDM and their acceptance of the method by making them apply PDM in an

observational study. We measured the percentage of maintainers that correctly

applied each step of PDM and compared the maintainers that correctly performed

each step with others. Hence, we evaluated maintainers effectiveness (RQ7) and

the skills needed to achieve it. We evaluated PDM acceptance by applying the

technology acceptance model (TAM) questionnaire after maintainers used PDM

(RQ8).

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Introduction 21

1.3. Thesis Outline

This thesis is organized as follows: Chapter 2 presents the background and

related work. Chapter 3 presents the PDM method and a detailed example of the

PDM application. Chapter 4 presents the evaluation conducted by applying PDM

to two industrial web applications. Chapter 5 describes the evaluation of the reuse

of rules defined by PDM in other web applications. Chapter 6 presents an

observational study on the effectiveness of maintainers in applying PDM and their

acceptance of the method. Finally, Chapter 7 concludes the thesis presenting our

contributions and suggesting future work.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

2 Background and Related Work

2.1.Introduction

In order to provide the background for understanding the rationale used in

the PDM method, this section provides an overview on research related to

unhandled exceptions in web applications, automated approaches for maintenance

of web applications, and enforcement of exception handling policies. We discuss

the applicability of these approaches to deal with the problem of unhandled latent

exceptions. We restricted our scope of comparison to techniques and methods that

do not use software documentation as a resource for automation. This restriction is

due to practical reasons because software documentation usually suffers from

problems such as nonexistence (SOUZA; ANQUETIL; OLIVEIRA, 2006), low

quality (BRIAND, 2003; HUANG; TILLEY, 2003), or being outdated

(FORWARD; LETHBRIDGE, 2002), thus typically not being a trustworthy

resource during maintenance (SINGER, 1998; SOUSA; MOREIRA, 1998; DAS;

LUTTERS; SEAMAN, 2007).

2.2.Exceptions and web applications

An exception is an event that causes the suspension of normal program

execution (ISO, 2010). Exception handling is a program language mechanism that

passes error information by throwing and catching exceptions (ISO, 2010). In an

interactive information system, such as web applications, exceptional events must

be handled avoiding abnormal termination of user interactions. In this way,

throwing an unhandled exception is a defect. The thrown unhandled exception is

an error – the consequence of exercising a defect. Catching the exception reports a

failure since it corresponds to observing an error. A latent defect is the one that

never has been exercised during test and operation resulting in a failure, while

operational ones have already produced a failure during software operation or test.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 23

Preventive maintenance is the modification of a software product after

delivery to detect and correct latent faults (defects) in the software product before

they become operational faults (defects) (ISO, 2010). In a web application, when

an unhandled exception occurs, the event is typically registered in web server

logs. In the web server access logs, an HTTP 500 return code4 is registered in such

situation, while error log registers the stack trace of the failure. Appendix B

presents an example of an error log produced by a Java programmed (JEE) web

application running in Tomcat5 web server. However, each programming

language may have a different format to print a stack traces, and each web server

may have different fields and formats of logs. The practitioner should consult the

documentation of programming language and web server used in the web

application for more information about stack trace and logs formats, respectively.

2.3.Unhandled exceptions and reliability of web applications

Kallepalli and Tian (2001) propose the use of web server access logs to analyze

the reliability and perform the statistical testing of web applications. In that work,

the authors identified application failures using the HTTP response code recorded

in the web server access logs. They used Nelson’s (1978) model (2.1) and an

approximation of mean time between failures (MTBF) (2.2) for reliability

calculation. In both formulas, f is the number of failures and n the number of

accesses, which represents the workload variable. Kallepalli and Tian also suggest

directing the testing by the number of accesses to each URL. This strategy is

called statistical web testing. However, the HTTP return code only informs the

type of failure; therefore, further analysis is needed to identify the related defect.

Statistical web testing is dependent on the operational profile of the software,

failing to find defects in the less frequently accessed areas of the application.

(2.1)

4 https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

5 http://tomcat.apache.org/

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 24

(2.2)

Tian et al. (2004) experimented other variables as the workload for calculation

of reliability based on web server logs. They used bytes transferred, number of

users and number of sessions as workload. However, as the number of users and

number of sessions was derived from the internet protocol address (IP) field of the

web server logs, they were imprecisely calculated.

Huynh and Miller (2005) presented an analysis of the return HTTP codes

neglected by previous studies. Specifically, one of these codes was the HTTP 500

code, which is returned when a server-side script execution fails. This code is

logged when an exception is thrown but not handled by the web application.

Goševa-Popstojanova et al. (2006) conducted a study on reliability and

presence of defects in eight web applications. The access and error logs of the

applications were analyzed to identify failures and the unique errors that

originated those failures. The authors defined the concept of unique errors as a

combination of the error message and the source file that generated the message.

However, error messages can present parameters, such as variable names and

values, and vary according to these parameters. The unique errors were used to

assess the number of defects empirically and they did not consider identifying

defect patterns.

Ma and Tian (2007) presented an adaptation of orthogonal defect classification

(ODC) (CHILLAREGE, 1995) for classifying and analyzing errors of a web

application with the intent of identifying problematic areas for focused reliability

improvement. The method proposed combines attributes extracted from web

server logs to classify defects. The attributes used were the response code, the file

type, referrer type, agent type and observation time. The authors also introduced

an analysis procedure to assess the risk and leverage of sub-classes of problems by

evaluating their error rate and share. The error rate is defined as the ratio between

the number of failures and the number of accesses of a particular class, while the

error share is the percentage of a given class of errors. Although the authors

presented new analyses, they did not evaluate causes in web application source

code, thus they did not identify defect patterns.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 25

Huynh and Miller (2009) partially replicated the work of Tian et al. (2004)

considering other web applications. One of the applications studied had a strong

reliability requirement, presenting few failures. Hence, reliability metrics were

calculated by month and not by day. They also observed that Nelson’s model had

low representability for analysis when high-reliability is needed. Thus they used

MTBF instead for analysis.

Banerjee et al. (2010) investigated the suitability of reliability measures with

respect to their relevance in the context of service level agreements (SLA) of

software as a service (SaaS). They concluded that web server logs filtration is

essential for proper SaaS reliability calculation and agreement, since the counting

of accesses to static files, such as images, masks the actual reliability of the web

application.

Jaffal and Tian (2014) performed a reliability assessment of the transactions of

a web application. A transaction is a sequence of information exchange and

related work that is treated as a unit for the purposes of satisfying a request and

for ensuring the data integrity (JAFFAL; TIAN, 2014). The reliability was

assessed using transactions as workload, thus calculating the chance of one

transaction being completed without errors. The authors used different data

sources for calculating the reliability, including user sessions retrieved from the

application database and unique failures extracted from application server logs.

However, the intent of the study was only to calculate transactions reliability, and

no further investigation was presented to discover failures causes.

Alannsary and Tian (2016) proposed time taken for a request completion as a

workload variable for measure the reliability of SaaS web application. The time

taken variable is typically available in the platform as a service (PaaS) or

infrastructure as a service (IaaS) providers, since it is used for the cost of service

calculation. The time is taken in requests that result in failure also have

infrastructure cost; Alannsary (2016) showed how to calculate this cost.

2.4. Automated approaches for the maintenance of web applications

Many primary and some secondary studies addressing automated testing of

web applications have been conducted. Among the secondary studies, Li et al.

(2014) explained the main techniques found in the literature for testing web

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 26

applications, whereas Garousi et al. (2013) and Doǧan et al. (2014) presented a

systematic mapping and review on the theme, respectively. Hereafter we present

only the automated, or semi-automated, approaches that act on the server-side of

the application and that do not depend on software documentation.

Session-based testing (ELBAUM; KARRE; ROTHERMEL, 2003) uses the

web server access logs to identify access sequences performed by one user, which

are the sessions, and re-execute them to reproduce failures and perform regression

testing. This approach does not deal with latent defects, acting only on defects that

have already produced a failure.

Scanning and crawling (BAU et al., 2010) are techniques used to perform

security testing of web applications. The scanners produce specific entries to

exercise common vulnerabilities of web applications, such as SQL Injection

(HARTLEY, 2012). The crawlers navigate through web pages finding points

where the scanners will act to identify vulnerabilities. However, to use these

techniques, the vulnerability must be previously known, as well as how to find it

and exercise it.

Reverse engineering of interface specification with the server-side application (

HALFOND; ORSO, 2007; HALFOND; ANAND; ORSO, 2009; SOHAN;

ANSLOW; MAURER, 2015), also known as web APIs, may be followed by

testing as a preventive maintenance approach for web applications. Some

techniques use static analysis (HALFOND; ORSO, 2007) or symbolic execution

(HALFOND; ANAND; ORSO, 2009) of the source code to recover the web API.

Sohan et al. (SOHAN; ANSLOW; MAURER, 2015) used an HTTP proxy to

collect examples of the web API usage and generate its specification based on

them. Reverse engineering of web API depends on sophisticated tools (

HALFOND; ORSO, 2007; HALFOND; ANAND; ORSO, 2009) and good

examples (SOHAN; ANSLOW; MAURER, 2015) of application usage to achieve

a reasonable level of precision. The imprecision of the generated interfaces

combined with randomly generated testing may not be sufficient to identify latent

defects with a low probability of occurrence (LI; DAS; DOWE, 2014).

Additionally, in cases of dispersion of defects throughout the application, many

interfaces would need testing, which would increase the cost of applying this

technique.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 27

There are some studies in the literature addressing defect prevention during

development using static analysis (HECKMAN; WILLIAMS, 2011; MUSKE;

SEREBRENIK, 2016). The software suites used to search for defects in source

code using static analysis are called Linters (AYEWAH et al., 2008). Open source

tools, such as SonarQube (SONARSOURCE, 2008), can identify defects in

programs written in more than twenty programming languages. However, Linters

check only defects associated with the inadequate use of a programming language

or the use of error-prone constructions. Thus they do not find application-specific

defects. Moreover, the level of precision of defect detection is a determining

factor in the practical adoption of Linters (JOHNSON et al., 2013). Furthermore,

fewer than 5% of the static analysis rules used in open source projects are custom

rules (BELLER et al., 2016), i.e., application-specific rules. This low usage may

indicate difficulty to work with custom rules to detect application-specific defects.

Ersoy and Sözer (ERSOY; SÖZER, 2016) presented an automated approach to

detecting application-specific defects using traces of unhandled exceptions as

input. In this procedure, four tools are used to automate the process: a log parser, a

root cause analyzer, a checking rule generator, and a static analysis tool. The

method was evaluated only by its recall, showing that it can find latent defects,

but the method precision on this task was not informed.

In this thesis, different from that of Ersoy and Sözer (ERSOY; SÖZER,

2016), we propose a method that not only develops but also evaluates and

improves custom static analysis rules using commonly available resources and

tools. Our study specializes in the corrective and preventive maintenance of web

applications. In contrast to other approaches to the same purpose and application

domain (ELBAUM; KARRE; ROTHERMEL, 2003; HALFOND; ORSO, 2007;

HALFOND; ANAND; ORSO, 2009; BAU et al., 2010; SOHAN; ANSLOW;

MAURER, 2015), it focuses on unhandled latent exceptions in web applications,

including specialized activities to detect and fix them.

2.5.Exception handling policies and its enforcement

Software developers often adopt an ignore-for-now approach when dealing

with exception handling (SHAH; GÖRG; HARROLD, 2008). They neglect

exception handling until there is an error or until they are forced to address it

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 28

(SHAH; GÖRG; HARROLD, 2010). This tendency is more common among

novice developers than expert ones (SHAH; GÖRG; HARROLD, 2010). A way

to force developers to deal with exception handling is to establish an exception

handling policy and check it with some verification approach.

An exception handling policy of a software project is the set of design

decisions that govern the use of its exceptions (BARBOSA et al., 2016). Most

software projects currently do not even define an explicit exception handling

policy (EBERT; CASTOR, 2013). In existing software with unhandled exceptions

present in logs, these policies may not be known by maintainers.

Some studies define domain-specific languages (DSL) for exception

handling policies, with related tools to enforcement (TERRA; VALENTE, 2009;

GURGEL et al., 2014; BARBOSA et al., 2016). These DSLs focus on defining

which modules have permission, obligation or prohibition to raise, handle,

propagate, re-map, or re-throw certain types of exceptions (BARBOSA et al.,

2016). However, they focus on exceptions raised by the application source code,

lacking ways to deal with exceptions raised by third-party libraries. Furthermore,

their implementation is limited to the Java programming language, which

provides static typing and other mechanisms that facilitate locating which

methods throw checked exceptions. It is not clear whether those solutions can be

used with unchecked exceptions and scripting languages, which do not oblige the

developer to declare the exceptions thrown by a method.

Finally, there are studies on assisting developer for repairing violations in

exception handling (TERRA et al., 2015; BARBOSA; GARCIA, 2018). Those

studies present recommendation systems that instruct developers on how to fix

defects related to exception handling. However, it is not clear what the precision

and recall of unhandled exception localization of these tools are, a task that should

be performed before they can recommend a repair strategy for the defect.

Additionally, they may need explicit exception handling policies defined to

achieve a reasonable level of precision in the repairing recommendations

(BARBOSA; GARCIA, 2018).

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Background and Related Work 29

2.6.Concluding Remarks

Although reliability against unhandled exceptions in web applications has

been subjected of investigations, the studies focus mainly on measuring reliability

using server logs (KALLEPALLI; TIAN, 2001; TIAN et al., 2004; HUYNH;

MILLER, 2005; GOŠEVA-POPSTOJANOVA et al., 2006; MA; TIAN, 2007;

BANERJEE; SRIKANTH; CUKIC, 2010; JAFFAL; TIAN, 2014;

ALANNSARY; TIAN, 2016;). Studies that consider practical conditions of

maintenance, when the documentation is not reliable, propose automated solutions

to deal with unhandled exceptions, but do not focus on locating the latent ones (

ELBAUM; KARRE; ROTHERMEL, 2003; HALFOND; ORSO, 2007;

HALFOND; ANAND; ORSO, 2009; BAU et al., 2010; SOHAN; ANSLOW;

MAURER, 2015). On the other hand, linters can find a myriad of defects directly

in the source code (HECKMAN; WILLIAMS, 2011; MUSKE; SEREBRENIK,

2016), but they do not find application-specific defects, such as unhandled latent

exceptions.

 Policies for handling exceptions can be defined and checked using DSLs,

thus possibly locating unhandled latent exceptions. However, the proposed

solutions (TERRA; VALENTE, 2009; GURGEL et al., 2014; BARBOSA et al.,

2016) do not deal with unchecked exceptions or unhandled exceptions in

scripting languages.

Within this scenario, novel approaches are needed for helping maintainers to

automate the localization of unhandled latent exceptions in web applications. In

the next section, we propose a new method called Pattern-Driven Maintenance

(PDM).

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

3 The PDM Method

3.1.Introduction

In this section, we explain the proposed Pattern-Driven Maintenance (PDM)

method and present a comprehensive example of its application. Figure 1 shows

the activities collapsed into steps along the control flow of the method. Two

primary paths can be observed: the maintenance path (steps 1, 2, and 3) and the

defect pattern improvement cycle (steps 4, 5, and 2).

The maintenance path includes activities to process the server logs and

identify defect patterns (step 1), to develop static analysis rules to detect the latent

defects (step 2) and to verify the detected instances and correct the defects (step

3). The execution of the maintenance path occurs when the web server error logs

contain new records. The web server logs must be monitored periodically to

identify those new records by performing the first step of the method (failure

analysis and defect pattern identification). Eventually no defect pattern will be

identified in step 1, and in this case, no further step of PDM need to be performed.

The maintainer should perform the typical corrective maintenance in cases when

failures are present in logs, but no pattern were identified. For simplicity, we did

not represent this case in PDM workflow (Figure 1).

The defect pattern improvement cycle is performed when the evaluation of

the rules (step 4) (e.g., based on precision and recall) does not reach acceptable

levels to alert during development. These levels vary according to the static

analysis rule and depend on factors such as the impact on software reliability.

Each company or maintenance team also has its own tolerance levels to false

positive and negative alerts. Thus, we do not prescribe the thresholds for these

levels. Further information on how we establish those levels in our industrial

evaluations and benchmarks are provided in Section 3.5.

When precision or recall levels are not acceptable, the source code context

of the detected defects is analyzed to improve the static analysis rules (step 5).

Finally, there are two exit steps in the exit path of the method – rule deployment

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 31

for defect alerting (step 6) and rule contingency (step 7) –, which includes using

the rules and patterns only in a limited way. Further details on the seven depicted

steps are provided hereafter.

Figure 1: The PDM method control flow

3.2. Failure Analysis and Defect Pattern Identification

The first step of the PDM method is to perform failure analysis and defect

pattern identification. The web server error log contains records of the failures

generated by unhandled exceptions in web applications. Each record contains the

exception type, the error message, and the source code file and line where the

unhandled exception occurred. The log processing activity includes the extraction

of these data from the logs and groups them by similarity. We define two failures

as similar if their error types or messages are equal or vary only in parameter

values.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 32

Similar failures that occur in different parts of the source code suggest the

existence of a defect pattern, typically introduced by systematic errors by the

developers (KALINOWSKI; CARD; TRAVASSOS, 2012). Defect pattern

identification consists of visually inspecting the source code context. During this

step, the maintainer should focus on broadly identifying the defect pattern, trying

to capture all instances of the related unhandled exception present in the

application. This recommendation is due to the fact that latent defects are

unknown and might slightly vary in the source code. The PDM method verifies

and fixes only the defects identified by the pattern, thus it initially need a broader

pattern for subsequently refining it. On the other hand, the pattern should not be

defined too broadly, avoiding retrieving different kinds of defects. In this way,

some experience is needed for defining the first version of the pattern. After

finding a pattern, the maintainer must document it. Table 1 presents a template for

defect pattern documentation.

Table 1: Defect pattern identification form

Field Description

Defect Name A descriptive name for the defect

Description Situation that triggers the failure

Exception Type and

Failure Message

What exception is thrown when the failure occurs, and

which failure message is presented in the logs

Parameters in Failure

Message

Variables that are present in the failure message

Example of Failure

Message

An example of a failure message found in the log for this

defect pattern

Class and Method of

Throw

The class and method or group of them where the

exception is thrown

Defect

Characterization

Description in the natural language of the source code

that leads to the defect

Defect Code Example An example of the source code that leads to the defect.

Fixed Code Example An example of source code that fixes the defect.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 33

3.3.Static Analysis Rule Programming and Execution

After defect pattern identification, a static analysis rule is programmed and

executed to locate the instances of the pattern. Some static analysis tools, such as

SonarQube (SONARSOURCE, 2008), provide extension languages with which

the maintainers can program their own rules to locate defects. Those languages

use elements of the program represented into an abstract syntax tree (AST) and

navigation operations to traverse the AST. Maintainers should develop a static

analysis rule and test it using the defective and fixed code examples from the

pattern documentation. The developed rule must alert the defective code, and not

the fixed code to be accepted.

Thereafter, the static analysis tool can be used to execute the programmed

rules locating the instances of the patterns, which are also called alerts or

warnings. The located instances must include at least the defect that generated the

failures present in the logs. The other instances are candidates for latent defects.

The results of the static analysis, i.e., the source file and the line number of each

alert, are stored in the static analysis tool database or exported to a file to support

the other activities of the method.

3.4.Instance Verifying and Defect Fixing

In step 3, the maintainer verifies each instance of the pattern located and

corrects the defects found. System level tests or source code inspection should be

conducted for each alert instance with the intention to verify whether the target

exception is thrown. If the maintainer chose to use testing for verification, test

cases need to be defined for each instance of the pattern. The maintainer may

choose to automate these test cases for further verification after defect fixing or

perform them manually. It is noteworthy that, inherent to the testing activity, test

case design to throw the unhandled exception may be complicated.

Furthermore, as we observed in our industrial evaluations (see Chapter 4),

interrupting the verification step as soon as a false positive is found for

performing a defect pattern improvement cycle may reduce the effort of

performing PDM. This effort reduction occurs due to an improvement of the

defect pattern. The static analysis rule may automatically discard several false

positives that previously were matched by the pattern and will not be matched

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 34

after improvement. In this way, the discarded false positives do not need to be

verified in step 3, reducing the effort of PDM application.

However, the preemptive execution of step 3 turns unfeasible the

measurement of relative recall (see step 4, Section 3.5), since there will be no

verified defect candidates. This way of performing PDM should be used in

conditions where time for performing the method is more important than

measurement of relative recall, as typically occurs in practical conditions.

3.5.Rule Evaluation

The pattern improvement cycle diverges from the maintenance path by the

steps of rule evaluation (4) and context analysis (5). The maintainer uses the

alerts, defects, and false positive alerts to evaluate the rule, for instance by

calculating the precision and eventually relative recall of the static analysis rule

(see Table 2). In the formulas of Table 2, true defects alerted refers to the number

of true defects (i.e., true positives) alerted by a rule. It is noteworthy that the recall

is relative to the defects matching the predetermined pattern, and its formula

includes defects not alerted by the pattern (i.e., false negatives). A recall is

recommended for evaluating the effectiveness of a pattern only for research

purposes, since the effort to calculate it might involve inspecting the entire

application source code. In PDM, to reduce this effort, we used a relative recall

that approximates the expected recall. In a relative recall, false negatives are

located by inspecting or testing the candidate defects retrieved by the initial and

relaxed defect pattern version. The initial version should be broad enough to

retrieve all defects but may include false positives. The purpose of the PDM

learning cycle is to improve the precision without harming the relative recall.

Table 2: Metrics used in rule evaluation.

Precision

Relative Recall

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 35

Calculating these metrics requires verifying all defect instances, which

might require significant effort; thus, organizations may opt to conduct more

informal rule evaluations, i.e., using only the precision. Nevertheless, precision

and relative recall of the static analysis rules provide information about the quality

of the developed rule. The practical use of a rule for defect detection during

development depends on the acceptable values of these metrics.

A low precision value indicates that the rule will frequently alert the

developers when there is no defect (false positive), which often induces

developers to ignore warnings (JOHNSON et al., 2013). Low precision affects the

confidence of developers in defect detection, thus causing them to eventually

abandon this feature (JOHNSON et al., 2013). In contrast, low recall indicates that

the rule will frequently miss defects (false negative), not alerting the developers

about newly introduced defects. The threshold levels of precision and recall for

accepting a rule for defect prevention depend on the tolerance to accept these

situations. The definition of these thresholds may differ depending on

characteristics of the company, application and the type and impact of the defect

pattern.

In our industrial studies (see Chapter 4), we used a threshold level of 80% of

precision and 100% of recall. These thresholds were established by asking the

specialized opinion of each software project manager involved in the evaluations.

A secondary study (HECKMAN; WILLIAMS, 2011) consolidated the precision

of Linters. The precision reported in the studies vary from 3% to 98%, with a

mean of 34% and median of 25%, showing the need for further research in this

field. Additionally, less than 5% of the static analysis rules used in open source

projects are custom rules (BELLER et al., 2016), i.e., application-specific rules.

To the best of our knowledge, there is no benchmark published in academic

literature for precision and recall of application-specific static analysis rules.

3.6.Context Analysis

Maintainers perform source code context analysis to improve the precision

or relative recall when their thresholds for a rule are not acceptable. The alerts that

do not reveal defects during verification, i.e., false positive alerts, provide

information related to the context in which the static analysis rule fails (e.g., a

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 36

fixing alternative, which is a source code control flow that will not allow throwing

the exception). For example, when a throw statement is executed inside of third-

party library function, such as a string to integer conversion, it represents a misuse

of the function. Although source code of third-party libraries may not be

available, the failure produced in this situation is logged, allowing its

identification. The control flow present in application source code may prevent in

several ways that the instances of the same function call from being misused. The

maintainer inspects the source code looking for the reason why the alert is a false

positive, i.e., the control flow structures that prevent the exception from being

thrown. The identified fixing alternatives are added to the defect pattern

documentation.

After documenting the fixing alternative, the maintainer decides whether it

is feasible6 to automatically identify the fixing alternative, allowing such false

positives to be ignored by making modifications on the static analysis rules. In the

case of feasibility, the maintainer improves the rules (to consider such contexts)

by performing the steps of programming and executing (2) and evaluating (4).

Finally, improved rules can be accepted or rejected. If the rule gets accepted, the

maintainer performs the step of rule deployment and production (step 6);

otherwise, an improvement cycle can be performed to refine the rules. However, if

there is no confidence that the rule can be improved, the maintainer should not

deploy the rule. In this case, the maintainer performs the rule contingency step (7).

3.7.Deployment and Production of Rules

The rule deployment and production step (6) involves activities to make the

Integrated Development Environment (IDE) present the alerts to the developers

for defect prevention. Static analysis tools typically have configurations to choose

which rules will present alerts to the developers. The rule deployment activity

includes the setup of these configuration variables into the tool and the

6 The evaluations of Chapter 4 showed that features (or their absence) of static analysis

tools may make it unfeasible to improve a rule. In addition, Chapter 6 presents the main

difficulties of maintainers in applying PDM steps, which can also hinder or make it unfeasible to

improve a rule.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 37

configuration of IDE plugins for presenting the alerts. After deployment, the static

analysis tool, IDE, and plugin work together to present the alerts to the

developers.

3.8.Contingency of Rules

The rule contingency step involves the development or improvement of an

application programming guideline and the training of maintainers to use it. The

documentation of rules that could not be automated by PDM presents information

and examples about the defect patterns. The programming guidelines consolidate

the defect patterns with explicit instructions on how to prevent them manually.

The maintainers and developers should receive training on the defect patterns and

on how to use the programming guideline.

3.9. Example of PDM application

In this subsection, we present a step by step example of the PDM method

application in a comprehensive and straightforward case. We applied PDM in an

open source JEE software named Employment and Internship Management

System7 (SisGEE). Students developed this software during an undergraduate

course at CEFET/RJ, and CEFET/RJ employees use it. The selected example is

the same one used during the observational study described in chapter 6.

The inputs for PDM method application are the logs of SisGEE (the excerpt

of this log used for this example can be found in Appendix B) and a specific

version of SisGEE8 system that generated those logs. The first PDM step is failure

analysis and defect pattern identification (see subsection 3.2). Performing failure

analysis, we extracted data from the logs in order to compare the failures against

each other and search for defect patterns. Table 3 presents data extracted from the

logs. We can observe that exception type, and error message are equal for failures

1 and 3, as well as for failures 4 and 5. Similar failures should have the related

source code inspected together for defect pattern identification. Figure 2 and

Figure 3 show the source code that originated failure 1 and 3, respectively. We

7 https://github.com/diogosmendonca/sisgee

8 https://github.com/diogosmendonca/sisgee/tree/d06207f

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 38

can observe that both exceptions were thrown by the Integer.parseInt method. A

simple solution to handle those failures is surrounding Integer.parseInt method

call with a try/catch construct. In this way, we documented the pattern identified

and the proposed solution using Table 1 form for supplying information for static

analysis rule programming. Table 4 presents the documentation of the defect

pattern identified, while Table 1 presents the explanation for each form field.

Table 3: Data extracted from logs during failure analysis

#Failure File Name Line Exception Type Error Message

1 BuscaTermoAditivoServlet 49 java.lang.NumberFormatException For input string: ""

2 IncluirTermoEstagioServlet 60 java.lang.ClassCastException java.lang.Double

cannot be cast to

java.lang.Float

3 VisualizarTermoEAditivo 43 java.lang.NumberFormatException For input string: ""

4 RenovarConvenioServlet 44 java.lang.NullPointerException

5 VisualizarTermoEAditivo 50 java.lang.NullPointerException

6 index.jsp 4 org.apache.jasper.JasperException File

[import_head.jspf]

not found

Figure 2: BuscaTermoAditivoServlet source code near line 49

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 39

Figure 3: VisualizarTermoEAditivo source code near line 43

Table 4: Documentation of the defect pattern identified

Defect Name Unchecked Integer

Description The application throws an exception when a string

parameter is parsed to an Integer.

Exception Type and Failure

Message

java.lang.NumberFormatException, For input string:

"<value>"

Parameters in Failure Message <value> - the value of the parameter passed

Example of Failure Message java.lang.NumberFormatException, For input string: ""

Class and Method of Throw Integer, method parseInt

Defect Characterization A call to the parseInt method not surrounded by a

try/catch

Defect Code Example String intParam =

 request.getParameter("intParam");

...

//unchecked exception

Integer intValue = Integer.parseInt(intParam);

Fixed Code Example Integer intValue = null;

try{

 intValue = Integer.parseInt(intParam);

}catch(NumberFormatException e){

 //handle the exception

}

The next step of PDM is static analysis rule programming. Using the

documentation of the defect pattern, the maintainer uses some static analysis tool

to implement a rule that locates unhandled latent exceptions that match the defect

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 40

pattern. In our example, we used SonarQube9 for this task. SonarQube provides

access to the abstract syntax tree (AST) of a Java program using the Visitor design

pattern (GAMMA et al., 2002), allowing programming custom rules. Figure 4

presents a simplified version of the static analysis rule for the defect pattern

documented in Table 4. This rule locates all Integer.parseInt function calls that

are not surrounded by a try/catch. The method visitMethodInvocation is called for

each method call in the software being analyzed. This method checks whether the

name of the class is Integer and method name is parseInt. After locating one

instance of the parseInt method, isInsideTry checks its parents recursively in

search of a try block or a null value, returning if the method is inside a try block.

For further information on how to program custom static analysis rules using

SonarQube can be found in its documentation10.

Table 5: Alerts produced by the first version of the static analysis rule

with the results of their verification

#Alert File Line Result of Verification

1 BuscaTermoAditivoServlet.java 49 Defect (True Positive)

2 BuscaTermoAditivoServlet.java 54 No Defect (False Positive)

3 FormTermoAditivoServlet.java 115 No Defect (False Positive)

4 FormTermoAditivoServlet.java 225 No Defect (False Positive)

5 FormTermoAditivoServlet.java 265 No Defect (False Positive)

6 VerTermoAditivoServlet.java 48 No Defect (False Positive)

7 VisualizarTermoEAditivo.java 43 Defect (True Positive)

8 VisualizarTermoEAditivo.java 45 Defect (True Positive)

9 FormTermoEstagioServlet.java 214 No Defect (False Positive)

10 FormTermoEstagioServlet.java 600 No Defect (False Positive)

11 FormTermoEstagioServlet.java 646 No Defect (False Positive)

12 FormTermoEstagioServlet.java 749 No Defect (False Positive)

13 FormTermoRescisaoServlet.java 81 No Defect (False Positive)

After programming a static analysis rule, maintainers should use it to locate

unhandled latent exception candidates. Table 5 presents the alerts produced by

running the static analysis rule together with the results of the verification of the

alerts (achieved by inspecting the source code). Table 6 presents additional

9 https://www.sonarqube.org/

10 https://docs.sonarqube.org/display/PLUG/Writing+Custom+Java+Rules+101

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 41

potential defect candidates, located using an IDE search, which was not alerted by

the static analysis rule with the results of their verification. It is noteworthy that

none of them concerned true defects (i.e., the rule indeed should not have alerted

them). We calculated the precision and relative recall using the formulas

described in Table 2, resulting in a precision of 23% and a relative recall of 100%.

Figure 4: Example of static analysis rule implemented using SonarQube

Table 6: Defect candidates not alerted by the first version of the static

analysis rule

#Alert File Line Result of Verification

1 PrincipalTermo.java 378 No Defect (True Negative)

2 ValidaUtils.java 232 No Defect (True Negative)

3 ValidaUtils.java 233 No Defect (True Negative)

The 23% precision of the rule is unacceptable. Hence, we started a defect

pattern improvement cycle by conducting context analysis. In the context analysis,

we inspect false positive alerts searching for fixing alternatives different from the

ones already included in the defect pattern. Table 7 presents a fixing alternative

found during context analysis. After documenting the fixing alternative, we

modified the static analysis rule to include it and executed the new version of the

rule. The modified version of the rule eliminated all except for one false positive

alert (Alert #12) of Table 5. In this way, the new precision of the rule is 75%, and

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 42

the relative recall remains 100%. Alert #12 has a different fixing alternative from

the others, but the effort to include it in the defect pattern was not worthwhile to

eliminate one single instance. The new rule version was accepted and deployed

into a production environment for alerting developers.

Table 7: Documentation of a fixing alternative found during context

analysis

Defect Pattern Unchecked Integer

Context Name Inside Integer Validation

Context

Description

It is not possible to throw an exception in Integer.parseInt call when

the call is inside an if block that checks its parameter for integer

format

Context Cause Control flow avoids exception throw

Context

Characterization

An Integer.parseInt call inside an if block that uses the result of

ValidaUtils.validaInteger in its expression and

ValidaUtils.validaInteger was called with the same parameter of

Integer.parseInt.

Code Example campo = "Aluno";

idAlunoMsg = ValidaUtils.validaInteger(campo, idAluno);

if (idAlunoMsg.trim().isEmpty()) {

 Integer idAlunoInt = Integer.parseInt(idAluno);

 ...

}

3.10. Concluding Remarks

Pattern-Driven Maintenance (PDM) and its learning cycle guide maintainers

to produce static analysis rules that precisely locate unhandled latent exceptions in

web applications. PDM indicates how to use server logs and application source

code to identify similar failures and defect patterns. Those patterns are

documented and programmed in some static analysis tool for locating unhandled

latent exceptions. The located instances are verified for defect confirmation. The

confirmed defects are fixed, and the developed rule is evaluated regarding its

precision and its relative recall. If the rule does not achieve acceptable levels in

those metrics, PDM indicates how to improve them by excluding fixing

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

PDM Method 43

alternatives observed in the false positives. After improving a rule, its precision

and recall are re-evaluated. If it is needed and possible, new improvement cycles

are performed until the precision and recall are acceptable. Afterward, the static

analysis rule is deployed for alerting developers directly in their IDEs, preventing

the reintroduction of the same defect pattern. Otherwise, if the rules are

unacceptable and improving them is unfeasible, the prevention involves training

maintainers to avoid the identified patterns of defects by using the defect pattern

documentation.

PDM presents a novel approach to deal with unhandled latent exceptions in

web applications. Software engineering solutions need to be evaluated to assess

their benefits, risks, and conditions of application. In the next section, we present

two industrial evaluations of PDM.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

4 Industrial Evaluations

4.1.Introduction

Following the design science methodology (WIERINGA, 2014), after

designing the solution concept, evaluations should be conducted. As described in

the research design, we conducted two industrial evaluations, one under more

controlled conditions, and a second one that further approximates practical

conditions. In the first cycle, an initial version of PDM was designed and applied

to a small size industrial web application, in controlled conditions (with the author

of this thesis having complete access and previous knowledge about the

application and the domain), with the purpose of an initial evaluation. In the

second cycle, the PDM method was adjusted and applied to another small

industrial web application using different technologies from the first one, with

another industrial partner and without previous knowledge about the application

and its domain, relaxing some controlled conditions and evaluating the sensitivity

of the method. In this way, we aim to answer the following design science

knowledge questions (cf. Section 1.2):

RQ1. (effect) What is the software reliability improvement achieved by

fixing the located defects?

RQ2. (requirement satisfaction) What is the precision and recall of the

automated defect localization?

RQ3. (sensitivity) Which factors have an impact on the method

application and precision of the automated defect localization?

We use the metrics presented in Table 2 and the Nelson (1978) model

(Formula 2.1) to answer these questions. The reliability is measured using the

number of failures produced by unhandled exceptions during a period, in

comparison with the number of accesses of the application in the same period.

Sensitivity is discussed based on the experience of applying the method to two

independent and different industrial applications.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 45

4.2.First Evaluation

In our first evaluation of PDM, we applied the method to a financial web

application marketed as a software-as-a-service (SaaS) in Brazil since 2010

(VITALJOB SOFTWARE, 2010). Although this software had been in use for

eight years and a significant part of its defects had already been fixed, it was still

being evolved, under active maintenance and eventually presenting failures. Some

of these failures were caused by errors of use of the service; however, the

application should not raise unhandled exceptions in those situations.

The server-side of the application had 12 KLOC developed in Python with

the Django Framework running on Apache HTTP Server. The application source

code, 31 days of the HTTP server access log, and the same period of the Django

Framework error log were available. The author of this thesis applied the method.

We consider this evaluation under more controlled conditions, given that the

author previously worked with this industrial partner and application, so he had

full knowledge of the system behavior and technologies involved. SonarQube was

being used to control the code quality of the software under study; therefore, it

was selected as the static analysis tool for the method application. For this task,

we used its support for custom rules written in XPath. Data analysis was

performed using R scripts, and the test automation tool used the Django

Framework support for unit testing.

The log processing activity extracted 65 failures related to exceptions from

31 days of Django Error log. Table 8 shows these failures grouped according to

the type of exception thrown. Some of the error log entries were incomplete

because the TransactionManagementError does not provide information about the

source code line in which the exceptions are thrown. The incomplete entries do

not allow applying the defect pattern identification activity, although they are

included in the number of known failures. We grouped all entries according to the

type of exception, source file, and line, thus resulting in seven complete entries for

defect pattern identification.

As shown in Table 8, exceptions of type DoesNotExist and ValueError were

responsible for 44 out of 65 of the failures present in the logs (68%). Given that

defect analysis activities should focus on the most frequent types

(KALINOWSKI; CARD; TRAVASSOS, 2012), we investigated the source code

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 46

where these exceptions occurred for defect pattern identification and identified

three defect patterns, presented in Table 12. Each defect pattern relates to a

function call that may throw an exception. We programmed the static analysis

rules to locate these three patterns. All rules followed the same principle: the

instances that were not surrounded by a try/except can be a defect. In this way, all

possible defect instances could be located. These rules were executed in

SonarQube to have their instances located and were tested for defect confirmation.

After testing each candidate defect instance identified by the pattern, the

rule could be evaluated. Table 9 presents the rule evaluation results. Although the

rules were defined to initially reveal all possible related defect instances of the

identified patterns (aiming an initial recall of 100%, cf. Chapter 3), the levels of

rules precision of 49% to 67% were unacceptable for the company for defect

alerting within the developers’ IDE. Hence we started a defect pattern

improvement cycle.

Table 8: Number of failures and defects by exception type.

Exception Type Number of

Failures

Number of Operational

Defects

DoesNotExist 33 3

TransactionManagementError 17 -

ValueError 11 2

MultiValueDictKeyError 3 1

TypeError 1 1

Total 65 7

We conducted the defect pattern improvement cycle only for the rule

Django ORM get. The other rules had few examples; hence, the effort to improve

their precision might not justify the investment because of their low frequency of

occurrence. The contexts identified were the origin of data in the variable passed

as a parameter to the function, which could be from the request, database or a

constant. We programmed the rules to identify these contexts in SonarQube. Table

10 presents the results of rule evaluation considering the identified context. It is

possible to observe that, for one of the contexts (Django ORM get - Parameter is

from the request) the relative recall decreased, failing to detect some of the

defects. Therefore, this adjusted rule was discarded. Although the assessment

showed rule precision improvements, the levels of this metric still did not reach

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 47

the threshold of 80% established by the company for rule precision. Hence, we

performed only the rule contingency step after the improvement of the rules.

Table 9: Results of the evaluation of the developed rules.

Rule Alerts Precision

Total Defects No Defects

Django ORM get 109 53 56 49%

Float Conversion 15 10 7 59%

Date Conversion 6 4 2 67%

Table 10: Evaluation of the rules enhanced with the context.

Rule Contexts from Alerts Precision Relative

Recall

Django

ORM get

The parameter is not constant (A) 52% 100%

The parameter is not from the

database (B)

63% 100%

 The parameter is from the request (C) 74% 58%

 A and B 68% 100%

 A and B or C 65% 100%

We analyzed the logs from one month before and two months after the

defect fix deployment. Table 11 presents the results of this measurement. We can

observe that the number of failures caused by the identified defect patterns were

significantly reducted after defect fixing deployment, reaching zero failures in the

second month after deployment. The failure identified after the first month of

deployment was related to an incorrect fix of a previously identified defect.

However, for the final version of the rules, the precision ranged from 59% (Table

9, Float Conversion) to 68% (Table 10, Django ORM get A and B); thus the rules

were not accepted by the company for alerting developers.

Regarding the lessons learned from applying PDM in this first industrial

evaluation, they are twofold. First, concerning the precision, the main reason for

not being able to improve further it was that the abstractions needed to represent

the source code context of the defect patterns were not present in the selected

static analysis tool, namely, SonarQube with the XPath plugin. These contexts

could be detected with higher precision if data flow analysis was available in this

tool. Second, a significant effort was invested in testing false positive instances,

calling for a faster way to evolve the rules to eliminate false positives as soon as

possible.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 48

Table 11: Measurements performed before and after the deployment of

defect fixing during the PDM method application.

Metric Data used

to PDM

application

Month

Before

Deployment

First Month

After

Deployment

Second

Month After

Deployment

Time Range (days) 31 31 30 30

Number of accesses 140,162 138,221 117,536 117,141

Number of

unhandled

exceptions failures

65 50 45 19

Reliability for

unhandled

exceptions

99.954% 99.964% 99.962% 99.984%

Number of failures
caused by the

identified defect

patterns

44 12 1 0

Reliability for

failures caused by

the identified defect

patterns

99.969% 99.991% 99.999% 100.000%

Table 12: Defect Patterns Identified in the First PDM Validation of first

validation

Defect

Pattern

Name

Description Defect Code

Example

Fixed Code

Example

Django

ORM get

The application does

not catch the

exceptions thrown

when a database search

is conducted by id

using Django ORM
(Object-Relational-

Mapper), and the id

does not exist in the

database.

django.db.models

import Model

class

Account(Model):

 …

...

account =

Account.objects.get

(id=id)

...

try:

 account =

Account.objects.get(i

d=id)

except:

 #handle the

exception

Float

Conversion

The application does

not catch the

exceptions thrown

when a string is

converted to float.

a = “217x"

b = float(a)

try:

 b = float(a)

except:

 #handle the

exception

Date

Conversion

The application does

not catch the

exceptions thrown

when it converts a

string to date.

from datetime

import datetime

a =

datetime.strptime(\

'10/10/201a',’%d/%m

/%Y')

try:

 a =

datetime.strptime(\

'10/10/201a',

'%d/%m/%Y')

except:

 #handle the

exception

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 49

4.3. Second Evaluation

The second software selected to apply PDM was a small-sized

administrative web application of an educational institution, written in PHP.

Developers responsible for the software and working for this institution provided

access to the system source code and logs. The application web server logs had

evidence of failures caused by unhandled exceptions.

Building on the lessons learned from the first evaluation, in which we did

not achieve the expected levels of rule precision, we used different technologies

for developing the rules. This time we used programmed rules from SonarQube

written in Java instead of XPath. We chose to keep SonarQube and use Java

programmed rules because we already had experience with SonarQube and

because Java written rules are more expressive than XPath ones, giving us a better

chance of achieving higher levels of precision.

We also changed the way we executed the PDM method, slightly relaxing

the conditions of experimentation and approximating it more to realistic

conditions, as suggested by the design science methodology (WIERINGA, 2014).

In our first evaluation, we were concerned with rigor in the method application

and its evaluation. Hence, we evaluated the precision and recall of each rule and

its versions (see Table 9 and Table 10), which required the significant testing

effort of several false positive instances revealed by initial versions of the rules. In

the second evaluation, we were concerned with applying PDM in a fast and

practical way, thus approximating our evaluation to typical conditions of

industrial practice. Therefore, we chose a faster approach for evolving the rules,

producing a new version of a rule as soon as a false positive was found at the

testing step (3), relaxing the rule evaluation (4) and conducting the context

analysis step (5) to evolve the rule. The new version of the rule was then built to

discard other false positives with the same context of the one that was found,

avoiding the testing effort of false positive instances. Therefore, we calculated the

precision during the evaluation step only after evolving the rule to remove a

reasonable amount of false positives. Unfortunately, this approach does not allow

calculating the relative recall, for which all possible defect instances would have

to be tested for the initial version of the rule (to reveal the reference value for the

defects matching the predertemined pattern).

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 50

We first analyzed the web server logs of the application. As the selected

software has few accesses, we chose to analyze the maximum period of logs

available. In total, 434 days of logs were available, with 68,972 and 642 entries in

access and error logs, respectively. From these logs, we extracted the failures

caused by unhandled exceptions in the application, which counted 151 failures

(99.78% reliability). We analyzed the related operational defects in the source

code and identified three defect patterns. Table 13 presents these defect patterns.

As in the first PDM evaluation, the identified patterns are related to lack of data

validation.

After identifying the defect patterns, we started testing their instances and

improving the precision of the rules. Table 14 presents the results of rule

development and improvement. The first search for defect instances returned a

high number of possible defects since it did not include several existing structures

for handling or preventing exceptions from being thrown. The first version of the

rules also did not check situations where the origin of data made the checking

unnecessary, such as date conversion when the data comes from the database,

once the database provides dates in a fixed format. After including those and other

contexts found in the rules, we achieved a final number of latent defects and false

positives and used them together with the operational defects to calculate the final

precision of rules.

As shown in Table 14, this time the achieved precision level of the rules

(89.5-100%) was considered sufficient to be used for alerting developers during

software maintenance and evolution. Hence the rules were successfully deployed

into SonarQube to support defect prevention.

At the time the evaluation was conducted, only 30 days of logs after

deploying the defect fixes were available. In these logs, there were 2,808 records

of accesses and 19 records of failures. Those failures were caused by an error in

database configuration, and there was no evidence in the error log of failures

produced by unhandled exceptions related to the defect patterns.

Regarding the lessons learned, this PDM application allowed identifying

two of them. First, concerning the difficulty on rules implementation, the

abstractions available in Java written SonarQube rules are the ones present in AST

structure. Those abstractions are made possible through a visitor design pattern

(GAMMA et al., 2002). However, other concepts, such as data flow analysis,

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 51

were needed and we had to develop them also using a visitor pattern. This

approach was challenging, showing the need for more powerfull tools for rules

implementation. Second, we perceived similar defect patterns in both evaluations,

i.e., related to data validation. This perception raises the hypothesis that these

defect patterns could be generalized for other applications and that further

investigation in this direction should be conducted.

Table 13: Defect Patterns Identified in the Second PDM evaluation

Defect

Pattern

Name

Description Defect Code

Example

Fixed Code Example

Date

Conversion

A date conversion

returns false when it

fails. When a

member function is

called in a Boolean

an exception is

thrown.

$dt1 =

\DateTimeImmutable

::

createFromFormat(

'd/m/Y', $str1);

$dt1 = $dt1-

>sub(new

DateInterval('P1D'

));

…

if(!$dt1){

…

}

$dt1 = $dt1->sub(new

DateInterval('P1D'));

Unchecked

Integer

Data Access Object

(DAO) layer may

throw an exception

when a non-

validated integer

variable is passed as

parameter to their

member functions.

$res =

$someDao-

>someMethod($int_v

ar);

if (strval($int_var) !=

strval(intval($int_var)))

{

 …

}

$res = $someDao-

>someMethod($int_var);

Unchecked

Id

Data Access Object

(DAO) layer may

throw an exception

when a non-

validated identifier

variable is passed as

parameter to their

member functions.

$res =

$someDao-

>someMethod($id_va

r);

if (!isset($id_var) ||

 empty($id_var) ||

!is_numeric($id_var)){

 …

}

$res = $someDao-

>someMethod($id_var);

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 52

Table 14: Failures and defects according to defect patterns of the

second evaluation.

Defect
Pattern

Failures Operational
Defects

First
Search of
Instances

Final
Latent
Defects

Final
False
Positives

Final
Precision

Date
Conversion

17 2 32 8 0 100.0%

Unchecked
Integer

15 2 11 8 0 100.0%

Unchecked
Id

74 3 172 14 2 89.5%

Other
defects
that do not
form a
pattern

45 5 N/A N/A N/A N/A

4.4.Discussion

In this section, we answer our design science knowledge questions about

PDM based on the experience and the findings of our industrial evaluations.

Q1. (effect) What is the software reliability improvement achieved by fixing

the located defects?

In both evaluations, given the observed failures, we were able to eliminate

all defects that could generate failures with similar causes, helping to improve the

overall application reliability. The reliability concerning those unhandled

exceptions improved by 0.031% (99.969% to 100%) for the first and 0.22%

(99.78% to 100%) for the second application. The expectation is to prevent the

recurrence of the failures produced by defect patterns in a rate of 37 and 10

failures per month, respectively, considering a similar monthly access profile of

the applications.

Q2. (requirement satisfaction) What is the precision and recall of the

automated defect localization?

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 53

Although PDM allowed successfully improving the precision of the static

analysis rules, without harming the relative recall, the rules did not reach the

desired precision levels of 80% established by the company in our first evaluation.

We faced problems to program static analysis rules in SonarQube to represent the

contexts in which the application must handle the exceptions. The identified

contexts could have been better programmed using data flow analysis, identifying

the origin or type of variables. These features were challenging but possible to

program with the technology selected in the second evaluation. In this case, the

precision of rules was higher than the ones in the first evaluation, achieving 89.5-

100% of precision, thus being accepted by the company for defect prevention.

Q3. (sensitivity) Which factors have an impact on the method application

and precision of the automated defect localization?

As noticed in our lessons learned, the way in which PDM steps are

performed influences the application effort. Indeed, the PDM variation applied in

the second evaluation, considering the context of false positives as soon as

possible, showed to reduce the method application effort.

Another factor that may have an impact on effort is the familiarity of the

maintainer with the subject web application. Without this familiarity, extra effort

and support from other developers may be required in order to identify defect

patterns, perform testing and evolve the rules.

Regarding the precision, our findings indicate that there is an influence of

the technology selection on the precision of the rules. During our experience,

using data flow analysis besides control flow analysis features helped to improve

the precision of the rules in the second application.

4.5. Threats to Validity

In this chapter, we reported on applying an application-specific method in

two different industrial contexts to identify, treat and prevent unhandled latent

exception,s and improve application reliability. Thus, given the application-

specific nature, no further theoretical generalizations or claims were made beyond

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 54

the findings of our specific evaluation scenarios. Nevertheless, we report some

threats to validity that could have influenced our results.

Internal validity. One threat to internal validity is that maintenance and

evolution of both industrial applications were not stopped while PDM was

applied. Thus, the maintenance and evolution activity could have influenced the

effect measured in the number of failures after PDM application. To mitigate this

threat, we inspected, in both applications, all software changes made during the

period while PDM was being applied. No software change had introduced or fixed

defects related to the treated defect patterns, besides the ones made by applying

PDM. We also performed cause analysis of each software failure included in both

studies, splitting them in a group of those caused by the defect patterns and a

group of those caused by other problems (see Table 11 and Table 14), isolating

this confounding factor. We also did not evaluate the relative recall in the second

application of PDM. Hence unknown false negatives might exist.

Construct validity. A threat to construct validity that we observed was that

our second evaluation did not check all possible instances of defects with testing.

As mitigation for this threat, we inspected the discarded instances of possible

defects as soon as their context was included in the rules, preventing defects from

having been discarded.

Conclusion validity. In our second evaluation, the time range of logs available

after PDM application may not be sufficient to measure the effect on software

failures. Furthermore, the values of precision and recall calculated for the static

analysis rules depend on the state of the application to which the method was

applied. Thus, changes in the software, after applying PDM, could introduce new

contexts that are not handled by the rules, thus affecting the precision and recall.

As the relative recall is only an approximation of the actual recall, false negatives

might exist. We mitigated this threat by carefully defining broader patterns for

evaluating the relative recall and hence approximate it to the actual recall.

External validity. As is tipical with empirical studies conducted in

industry, the method application results are specific to the software applications

and their characteristics and should not be generalized. Finally, a single person

(the author of this thesis) was responsible for applying the PDM method steps

(while discussing them and adjusting decisions jointly with other researchers).

While he was familiar with the first software application and had a senior level of

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Industrial Evaluations 55

experience in the related technologies, he had no previous contact with the second

one and had less experience with its technology.

4.6. Concluding Remarks

We applied the PDM method to two industrial web applications from

different companies and using different technologies. In both evaluations,

applying the method enabled identifying three defect patterns and locating their

latent instances statically (using SonarQube (SONARSOURCE, 2008)). A total of

104 defects were tested and fixed. In order to assess the PDM method, we

performed measurements of failures caused by those patterns before and after

applying PDM. In both applications, the failures caused by the treated defect

patterns were eliminated, improving the application reliability. We also evaluated

the static analysis rules produced by the PDM method. The method iteratively

improved the precision of the defect pattern static analysis rules achieving

absolute levels of precision of the rules of 59-68% and 89-100% in each

application. These results strengthen our confidence that PDM can help

maintainers in improving the reliability of existing web applications.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

5 Reuse of Rules

5.1.Introduction

In order to assess the reusability of the static analysis rules produced by

PDM, we applied them to similar projects and measured its precision in finding

defects. As we observed in our previous PDM evaluations, the architecture of web

applications plays an essential role in PDM rule definition. In this way, we expect

that the rules produced by applying PDM in one software to be reusable in other

software with similar architecture. Hence, we conducted a study that aims to

answer the following additional design science knowledge questions (cf. Section

1.2):

RQ4. (sensitivity) In which scope rules created by applying PDM can be

reused?

RQ5. (effect) What are the benefits of reusing rules created by applying

PDM?

RQ6. (sensitivity) Which factors have an impact on reusing rules created

by applying PDM?

Our first industrial evaluation of PDM produced rules for Python/Django

written web applications, while the second produced rules for PHP ones. As

Django is a popular framework that defines its reference architecture, we were

able to find software projects with a similar architecture beyond the company

frontier where the Python/Django rules were produced. Hence, we performed a

cross-company evaluation of rules for these technologies. On the other hand, the

architecture of the software used in our second PDM evaluation was defined by

the company, and software with similar architecture was available for evaluation

only in the same company. Therefore, we performed a within-company reusability

evaluation for PHP rules. The next two subsections present the evaluations

conducted on the reusability of the rules for these two cases.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 57

5.2. Cross-company rules reuse evaluation

The software selection for the cross-company evaluation considered both,

the use of similar technologies and the maturity of the project. We selected two

software projects. The first was an information system for undergraduate student’s

performance monitoring named CADD11 (Student Performance Evaluation

Commissions Support System). The server-side of the application had 4.8 KLOC

written in Python/Django. The CADD system was developed over a one-year

period by two CEFET/RJ12 undergraduate students as a final course project. The

testing of the CADD system was adhoc, without using a systematic procedure.

The system tests presented several defects, thus reflecting a low level of maturity.

The second project was an agile project management software named

Taiga13. Taiga back-end14 had 30 KLOC written in Python/Django within a

history of four years of releases. This project is actively maintained and has

several branches and stars on Github. Hence, we considered that Taiga had a

higher level of software maturity than CADD system.

The evaluations performed on both software are presented and discussed in

the next two subsections.

5.2.1. CADD system

As an evaluation procedure of the reuse of Python/Django rules, we

executed them for the CADD system and tested the alerts produced for defect

confirmation. We also searched for all instances of the function call present in

each defect pattern as a way to confirm that the rules work correctly and to

measure the capacity of effort reduction of rules reuse. Table 15 presents the

results of a CADD system evaluation.

The CADD system did not have any float or strptime function calls, thus

float conversion and date conversion patterns were not applicable. Regarding the

Django ORM get pattern, we found 64 instances of the get function call. Some of

11 https://github.com/diogosmendonca/CADD

12 http://www.cefet-rj.br

13 https://taiga.io/

14 https://github.com/taigaio/taiga-back

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 58

the function calls not alerted by the defect pattern were inspected for confirming

that the static analysis rule works correctly. After confirming it, the other

instances were not inspected, since the original rule evaluation presented a relative

recall of 100%. In the case of the CADD system, we reduced by 62.5% the effort

of checking the proper exception handling in the get function calls by applying

Django ORM get pattern. This result was achieved because 40 function calls out

of 64 did not need to be verified.

Table 15: Evaluation of the Python/Django rules in CADD system.

Defect Pattern Total of

Function Calls

Function

Calls not

alerted

Function

Calls alerted

Defects Precision

Django ORM

Get (A and B)

64 40 24 18 75%

Float

Conversion

0 0 0 N/A N/A

Date

Conversion

0 0 0 N/A N/A

The function calls alerted by Django ORM get pattern were tested for defect

confirmation. The precision level of 75% found is slightly superior to the

precision found in the software in which the rule was produced (68%). We

inspected the false positives of the CADD system for causal analysis and found

similar contexts causing the pattern to fail from the ones in the software which

originated the rule. As stated before, this precision could be improved by using a

tool with more resources for rule programming than SonarQube.

The level of precision found (75%) within the number of defects discovered

in the software (18) strengthened our confidence that the rules produced by PDM

may be reused in a cross-company setup to find defects in less mature software

with a reduced effort. With the intent to help researchers and practitioners to

understand better and check our results we made the artifacts used in our

evaluation available on the internet15.

15 https://github.com/diogosmendonca/CADD/issues/1

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 59

5.2.2.Taiga

Taiga is a 30 KLOC, Python/Django written mature software with several

installations and users. We chose Taiga to evaluate rule reuse in more mature

software than the CADD system.

As the evaluation procedure, we executed the Python/Django rules in Taiga,

excluding automated tests and migrations (database creation scripts) from the

analysis. We also searched for the function calls present in the rules for checking

if the rules were working correctly. Table 16 presents the number of function calls

and alerts found. As our study with Taiga intended to understand the reuse of

rules and not to fix defects, we chose to inspect the alerts produced by the rules

instead of testing them. After inspecting some alerts without finding any defects,

we found three new fixing alternatives that prevent the defects alerted by the

Django ORM get pattern. Those contexts are explained in Table 17.

After finding these contexts, we realized that a new defect pattern

improvement cycle would have to be performed to reuse Django ORM get rule in

Taiga effectively. As some of these contexts could be very complicated or even

impossible to include in the Django ORM get rule using SonarQube we decided

not to perform the improvement cycle. Furthermore, the effort to continue

inspecting Taiga without an expectation of executing an improvement cycle of the

rule would not be worthwhile for the study purpose. Thus, we decided not to

continue inspecting Taiga and finished the evaluation.

We conclude from the Taiga evaluation that the rules produced by PDM in

one software may not be reusable in other software without adaptation, even when

both software use the same framework or reference architecture. Programming

style and architecture could be different from one software to the other, and the

execution of a defect pattern improvement cycle may be needed. Furthermore, as

also observed in the CADD system, the use of previously defined defect patterns

may reduce the effort of checking a system for a specific defect. In case of Taiga,

the Django ORM get rule execution enabled to reduce the inspection effort,

discarding the need for inspecting 81 out of the 139 ORM get function calls,

representing an effort reduction of 58% (naive estimate considering that all

function calls whould require the same effort).

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 60

Table 16: Evaluation of the Python/Django rules in Taiga.

Defect Pattern Number of

Function

Calls

Alerts produced

by the Defect

Pattern

Alerts

inspected

Defects Precision

Django ORM Get

(A and B)

139 58 32 0 N/A

Float Conversion 0 0 0 0 N/A

Date Conversion 0 0 0 0 N/A

Table 17: New contexts found for Django ORM get rule in Taiga.

Context Description Code Example

The use of pk to access an

identifier attribute passed

to get method instead of

an id attribute

User.objects.get(id=otherObject.pk)

Id validation using a

validator and inheritance.

ProjectExistsValidator

checks if the project exists

and is called through

inheritance on

DueDatesCreationValidator

is_valid method.

class ProjectExistsValidator:

 def validate_project_id(self, attrs, source):

 …

Class DueDatesCreationValidator(

 ProjectExistsValidator,

 validators.Validator):

 project_id = serializers.IntegerField()

 …

validator = validators.DueDatesCreationValidator(

data=request.DATA, context=context)

if not validator.is_valid():

 return

response.BadRequest(validator.errors)

project_id = request.DATA.get('project_id')

project = models.Project.objects.get(id=project_id)

Constant as a literal or

attribute.

class BaseEventHook:

 platform = "Unknown"

 …

 def get_user(self, user_id, platform):

 …

 user = get_user_model().objects.get(

 is_system=True,

 username__startswith=platform)

5.3. Within-company rules reuse evaluation

The software selected for within-company rules reuse evaluation was a 1.7

KLOC, PHP written application with architecture similar to the software that

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 61

originated PHP rules. This application had been recently developed over a four-

months period by three developers. Its purpose was to help the employees of the

company to register themselves in the new corporate email system. Hereafter we

refer to this application as a Registration system.

As an evaluation procedure, we started by executing the PHP rules without

any modification in the Registration system. In the first execution, no defect

candidate was found by the patterns. With the intent of verifying this result, with

the aid of an IDE, we searched the source code for the elements contained in each

defect pattern. We did not find any createFromFormat function call or integer

variables being passed to DAO layer, which was the elements of the date

conversion and the unchecked integer patterns, respectively. However, we found

many id variables being passed to the DAO layer, which are the elements of the

unchecked id pattern. The rule was not able to find that function calls because the

naming convention for the DAO instance variables changed from the original

system to Registration system. Thus the rule was adjusted to reflect the new

naming convention and was again executed in the Registration system. Table 18

presents the results of the adjusted rule execution and inspection together with the

total number of all function calls.

The adjusted unchecked id rule found five defect candidates in a total of 50

function calls, which represents a checking effort reduction of 90%. We inspected

the alerts produced, and two of them were confirmed as defects, thus reflecting a

precision of rule of 40%. Although this precision is low, the company decided to

use the rules in its production environment for the Registration system. This

decision was based on the excellent result in the first experiment with those rules,

which strengthened the confidence of the company practitioners that the rules are

useful for finding defects. Additionally, the low absolute number of false positives

(three) associated with the functionality of SonarQube of marking false positive

alerts not to be shown withing developer’s IDE made the effect of false positives

irrelevant for the developers.

We conclude from the Registration system evaluation that it is possible to

reuse rules produced by PDM in a within-company environment. We also find

that the adoption of the rules, in this case, was influenced by the previous

experience of the company with the rules and that the precision may have had a

low influence on this decision.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 62

Table 18: Evaluation of the PHP rules the Registration system.

Defect Pattern Number of

Function

Calls

Alerts produced by

the Defect Pattern

after adjustment

Defects Precision

Unchecked Id 50 5 2 40%

Unchecked Integer 0 0 N/A N/A

Date Conversion 0 0 N/A N/A

5.4. Discussion

RQ4. (sensitivity) In which scope rules created by applying PDM can be

reused?

Our evaluations indicate that the rules produced by PDM might be reused in

other software in within-company and cross-company environments. Table 19

shows a summary of our quantitative results. The defects found showed the

potential reuse effect of rules produced by PDM on the web applications

reliability. This potential can be achieved not only in the maintenance and

evolution phases but also in the software development phase. The CADD system

was developed recently and, at the time of the writing of this document, it was not

in production stage yet. The rules produced by the application of PDM on other

software helped to identify several defects in the CADD system before it was

released to its customers.

Table 19: Summary of PDM reuse of rules evaluation

Software /

Metric

Type of Reuse Technology Defects

found

Precision Defect

Candidate

Reduction

CADD Cross-company Python/Django 18 75% 62.5%

Taiga Cross-company Python/Django 0 N/A 58%

Registration Within-

company

PHP 2 40% 90%

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 63

RQ5. (effect) What are the benefits of reusing rules created by applying

PDM?

The beneficial effects of the reuse of rules produced by PDM is finding

defects and reducing the number of defect candidates for verifying a defect pattern

in other software. Table 19 presents our results. The precision of reused rules

ranged from 40-75% without compromising the relative recall of 100%. The

defect candidate reduction for verification ranged from 58-90% in our studies,

which might represent a significant effort reduction in verifying the presence of a

defect pattern in a software.

RQ6. (sensitivity) Which factors have an impact on reusing rules created

by applying PDM?

We found some influence factors for rule reuse and adoption. First,

architecture plays an essential role in rules definitions in PDM and consequently

in its reuse. However, architecture similarity is not enough for rule reuse. As we

observed in the Taiga and Registration systems, differences in the way that

architecture is implemented and programming style might cause rules not to work

correctly. Hence, the adjustment of the rules might be needed to enable effective

reuse. An influence factor for reused rules adoption in a within-company

environment is the success of rules in finding defects on other software. Indeed,

the influence of this factor overcame the low precision of rules achieved in the

Registration system, and the company chose to deploy the rule for defect

prevention.

5.5.Threats to Validity

Internal Validity. The verifications of the results produced by the rules

were conducted by a single researcher. However, the artifacts (except the

proprietary ones of the Registration system) used in our evaluation are available

online12, allowing the investigations to be replicated by others to confirm the

obtained results. Additionally, the partial inspection of defect candidates, with the

purpose of verifying the correctly working of a rule, during its reuse might have

caused missing false negatives. Inspecting all defect candidates discarded by a

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 64

rule is not a practical solution for confirming whether it is correctly working. One

of the expected benefits of reuse of rules is reducing the effort of inspection, and

by inspection all defect candidates this benefit would not be achieved.

Construct Validity. We selected the software systems for the study by

convenience. For instance, the selection of software that was developed by

students, who have a novice level of experience in software development, may

have influenced the evaluation on the reusability of the rules. It is noteworthy that

the defects detected by the patterns in our study are more commonly introduced

by novice developers than by experienced ones.

Conclusion Validity. The number of systems chosen for evaluation does

not allow applying any more sophisticated statistical techniques. Instead of

claiming for conclusion validity we addressed the knowledge questions using a

qualitative approach, trying to gather an initial understanding of the reuse scope,

effects and factors.

External Validity. We recognize that the evaluations and results presented

in this chapter are only examples of reuse of rules produced by PDM applications.

The quantitative results achieved cannot be extrapolated to any other software

than the ones in which the evaluation was performed. Thus, our findings should

be interpreted as preliminary results from a specific context.

5.6.Concluding Remarks

We found that rules produced by applying PDM might be reused in within-

or cross-company environments, and not only for software in the maintenance

phase, but also recently developed ones. We were able to find defects in other

software by reusing rules, as well as to reduce the verification effort of a defect

pattern. Nevertheless, as expected, the architecture and programming style played

an essential role in successfully reusing rules produced by PDM application, thus

being an influencing factor for reuse. This finding indicates the feasibility of PDM

producing rules that are application architecture and coding style specific, and not

only application-specific. In this way, the reuse of rules has the advantage of

producing more robust rules and might reduce the effort of identifying similar

patterns in other systems. We also observed that previous successful experience

with PDM influences rule reuse adoption.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Reuse of Rules 65

Based on our experience, we recommend some practices for the evaluation

and implementation of reuse of rules produced by PDM. After executing a rule in

another software, our advice is to inspect both the alerts produced and the

potential defect candidates that were not alerted. The inspection of the former

might show new contexts to include in the rule to avoid false positives, and the

latter might present adjustable cases where the rules fail because of differences in

the architecture implementation or programming style. After inspecting these

cases, fully or incrementally, the rules can be adjusted and executed for

performing the maintenance cycle of PDM. Furthermore, additional defect pattern

improvement cycles can also be performed if needed.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

6 Evaluation of the Acceptance of PDM

6.1. Introduction

The studies presented in previous chapters showed that PDM is effective for

preventing unhandled latent exceptions. However, in those studies, only the

maintainer that created PDM (the author of this thesis) applied the method.

Nevertheless, their feedback was positive about PDM experience, strengthening

our confidence that PDM could help other maintainers. However, this feedback is

insufficient to know whether they would accept and effectively apply PDM.

Aligned with the methodology for introducing software processes described by

Shull et al. (2001), because at this point we had determined the feasibility of

PDM, our next step was to conduct an observational study.

In this way, our research objective in this chapter is to evaluate PDM

concerning the effectiveness and acceptance from the viewpoint of different

maintainers, answering the following additional design science knowledge

questions (cf. Section 1.2):

RQ07. How effective are maintainers applying PDM for preventing defects?

a. How effective are maintainers in identifying and documenting

defect patterns?

b. How effective are maintainers in programming a static analysis

rule?

c. How effective are maintainers in identifying and documenting

fixing alternatives present in false positives of a defect pattern?

RQ08. Would maintainers accept to use PDM?

d. How do maintainers perceive PDM regarding its ease of use?

e. How do maintainers perceive PDM regarding its usefulness?

f. Do maintainers intend to use PDM after experimenting it?

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 67

 We conducted an observational study of PDM application using three

groups of novice maintainers with different experiences and knowledge. The first

group served as a pilot for instruments validation and was composed of computer

science graduate students (n=9). The other two groups were composed of

computer science undergraduate students. Students from group A (n=27) had no

previous experience with the software under investigation and limited experience

with the involved technologies (JEE), whereas students from group B (n=18) had

previous experience with the software and were more familiar with its

technologies. Each group was trained16 and applied the two main reasoning steps

involved in PDM, concerning identifying defect patterns from logs and adjusting

static analysis rules to detect such patterns precisely. Group B had an additional

session to implement the static analysis rules. We collected the results of applying

those tasks and their feedback on the difficulties found. We also used the

Technology Acceptance Model (TAM) (DAVIS, 1989) to assess the acceptance of

PDM by maintainers in its three dimensions: ease of use, usefulness, and intention

of use.

The remainder of this chapter is organized based on a guideline for reporting

experiments (JEDLITSCHKA; CIOLKOWSKI; PFAHL, 2008), as follows.

Section 6.2 presents our experiment planning. Section 6.3 details the

observational study execution. Section 6.4 presents the study results. Section 6.5

discusses the results. Finally, we present the threats to validity in Section 6.6 and

concluding remarks in Section 6.7.

6.2. Planning

6.2.1. Goals

The research objective covered in this study is to evaluate PDM concerning

the acceptance and effectiveness from the viewpoint of different maintainers. In

this way, following the GQM template (BASILI; CALDIERA; ROMBACH,

1994) we have the following goal:

16 Our training materials are available in our replication package

(http://doi.org/10.5281/zenodo.2597220)

http://doi.org/10.5281/zenodo.2597220
DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 68

Analyze PDM for the purpose of characterization with respect to

effectiveness on conducting its steps, perceived usefulness, ease of use, and

intention of use from the point of view of maintainers in the context of computer

science students applying the PDM steps on excerpts of artifacts from a real and

specific software product.

6.2.2. Participants

We selected the subjects of the study by convenience. We had access to

graduate and undergraduate students in courses related to software quality of two

different Brazilian universities. The first group of students was composed of nine

graduate students in informatics from the Pontifical Catholic University of Rio de

Janeiro. We called this group Pilot since its primary purpose was to help validate

our materials. The other two groups called A (n=27) and B (n=18), were

respectively composed of undergraduate students in computer science from the

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and the Federal

Center of Technological Education Celso Suckow da Fonseca (CEFET/RJ).

Students of Group A were enrolled in the discipline of software testing and

measurement, which is in the second year of their course, whereas students of

Group B were enrolled in the discipline of software engineering, which is in the

third year of their course.

One relevant difference between groups A and B was that group B had

previous experience with the software on which they would apply PDM. The

previous experience was possible because that software was used in the final

course assignment in which group B students were enrolled. At the time when the

students performed the tasks of the study, the assignment had already been passed

to the students.

6.2.3. Experimental Materials

The characterization of students was made by filling a characterization form

with questions about their experience (in months) with software development and

maintenance in different contexts (for their own use, in a course, and in the

industry). We also included questions about the level of experience with

techniques and technologies that could influence the results of the experiments. In

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 69

case, we asked about their level of experience in Java, JEE, stack trace reading,

static analysis rule programming, and source code inspections, as well as their

proficiency in the English language. The consent and characterization forms used

in the study are available in Appendix A.

The software for applying PDM was selected by convenience. The selected

Internship and Employment Management System (SisGEE)17 is an information

system developed by students as an assignment of a web programming discipline

of a computer science course at CEFET/RJ. SisGEE was developed using JEE

technology and contained some defect patterns of unhandled latent exceptions in

its source code.

We exercised some of those unhandled exceptions to produce a log for

PDM application. The produced log is available in Appendix B, and the version of

SisGEE that was used for producing this log is available on Github18. The log

contains two exceptions produced for invalid conversion from string to an integer

(NumberFormatException), two exceptions produced by access in service layer

that returns null and the null value is used without previously checking

(NullPointerException), and other two failures that do not form any pattern.

The first task of the study (Task 1) consists of executing the first PDM step,

i.e., failure analysis and defect pattern identification. The failure identification

consists of extracting failure data from logs filling a provided form. All groups of

maintainers received the same form for failure identification. This form is

available in Appendix C and D. The data that should be extracted consists of a file

name and line where the exception was thrown, as well as the exception type and

error message contained in the failure. After performing failure identification,

maintainers were instructed to use the extracted data to compare failures and

identify similar ones.

The maintainers were instructed to inspect the source code related to similar

failures to identify patterns formed by the defects. If a defect pattern was

identified, maintainers should document it. The Pilot group received a form with

separate fields for information that would be useful for identifying a defect pattern

whereas groups A and B received training in using a pattern language and should

17 https://github.com/diogosmendonca/sisgee

18 https://github.com/diogosmendonca/sisgee/tree/d06207f

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 70

document the defect patterns using that language. The form provided for the Pilot

group is available in Appendix C. The fields are described in Table 1 while Table

4 presents an example of this form filled. The pattern language used by groups A

and B consists of the same syntax of the software programming language (Java),

but including wildcards symbols and conventions for documenting the pattern.

Table 20 presents the wildcards and conventions available in the pattern language

while Table 21 presents an example of defect pattern documented using this

language. The forms provided for group A and B to fill during the first task of the

study is available in Appendix D.

Table 20: Pattern language wildcards and conventions

Description Wildcard Symbol Example

An element must be

present as it appears in

the defect instances to

describe the pattern

Use the same elements

present in the examples

of the defect, typically

structural element.

If, for, while, switch,

assignments, operators,

etc.

An element must be

present to describe the

pattern, but the

identifier name can vary

in each instance of the

defect. An abstraction of

identifier name is

needed.

Prefix name

convention: any, some,

other; followed by the

name of the element

needed.

anyVariable, otherVariable,

someMethod, someClass

An element or group of

elements do not need to

be present to form a

pattern, and it can be

fully abstracted in the

pattern description

The symbol “…” is used

where any code can be

present.

if(someVariable){

…

},

someClass.someMethod(…)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 71

Table 21: Example of defect pattern documented using the pattern

language

Defect Example Defect Pattern

String param =

request.getParameter("param");

…

if(param.length() > 0){ //line where the

//exception was thrown

 …

}

String someVariable =

request.getParameter(“someParam");

...

someVariable.someMethod(...);

...

String other =

request.getParameter(“otherParam");

…

String msg = “invalid value: ” +

other.trim(); //line where the exception

//was thrown

…

After performing each task of the study, the maintainers were asked to fill a

follow-up questionnaire with questions about their strategies and perceptions on

the task. The questionnaire used for the first task of the study was equal for all

groups of maintainers, and it is available in Appendix C and D. The questions

asked concerned: the strategy used by the maintainer to identify the defect pattern,

the perception if the time was enough to complete the task, the confidence in the

patterns reported, the ease of performing the task, and the difficulties found.

 Task 2 consisted of programming a static analysis rule. For this task, it one

defect pattern documentation was provided, and the maintainers were asked to

program a static analysis rule that locates the instances of this defect pattern. The

provided defect pattern documentation was the one presented in Table 4. The tool

selected for static analysis rule programming was SonarQube, which supports rule

programming in Java programming language using the Abstract Syntax Tree

(AST) of the Java language and the Visitor design pattern. A SonarQube template

project of a custom static analysis rule was provided to facilitate the task. After

finishing the task, the maintainers should provide the source code of the

programmed static analysis rule and fill the follow-up questionnaire, which

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 72

follows the same template of task 1. The form used in task 2 is available in

Appendix E.

Table 22: TAM questions used in the study

Dimension ID Question

Usefulness Q1 Using PDM would improve my performance in preventing

unhandled latent exceptions (i.e.., prevent faster)

Q2 Using PDM would improve my productivity in preventing unhandled

latent exceptions (i.e.., prevent more and faster)

Q3 Using PDM would enhance my effectiveness in preventing

unhandled latent exceptions (i.e., prevent more)

Q4 I would find PDM useful in preventing unhandled latent exceptions

Ease of use Q5 Learning to operate PDM would be easy for me

Q6 I would find it easy to get PDM to prevent an unhandled exception

Q7 It would be easy for me to become skillful in the use of PDM

Q8 I would find PDM easy to use

Intention to

use

Q9 I intend to use PDM regularly at work

Finally, Task 3 comprised the PDM steps of rule evaluation and context

analysis. To perform this task, we provided the documentation of one defect

pattern, the source code of the application that contains this defect pattern, and a

list of source code lines in this application that were alerted by a static analysis

rule that implements the defect pattern. Table 4 presents the provided defect

pattern documentation. The application source code was the same one of other

tasks, thus being available on Github. The alerted source code lines were provided

in a form provided for maintainers performing the task, which is presented in

Appendix F. During Task 3, maintainers should classify the alerts provided as

defects or false positives. If a false positive was found, they should inform which

fixing alternative was present in the source code. In the case of finding new fixing

alternatives, maintainers should document them. The pilot group documented the

fixing alternatives using a form while groups A and B used the pattern language.

The form used by the Pilot group is presented in Appendix F while the one used

by groups A and B is presented in Appendix G. After performing the task, the

maintainers were asked to fill the follow-up questionnaire, which is similar to the

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 73

follow-up questionnaire of other tasks, and is included in both forms of Pilot and

groups A and B.

At the end of the study, the maintainers were asked to fill the TAM

questionnaire. This questionnaire is composed of nine questions split into three

dimensions: usefulness, ease of use, and intention to use. The answers are

provided in a five-point Likert scale ranging from strongly disagree to agree

strongly. The questions of TAM questionnaire adjusted to our study are presented

in Table 22, and the form used for asking them to maintainers can be found in

Appendix H.

6.2.4. Tasks

The study started with the proper preparation of a laboratory with computers

and Netbeans IDE for students to be able to perform the tasks. As soon as

maintainers came to the laboratory, they received the consent term and the

characterization form (see Appendix A). After filling these forms, an introductory

presentation of 30 minutes about the PDM method was held, followed by a

training of 20 minutes on Task 1 activities.

This training includes learning how to identify the data that should be

extracted from the error logs, how to compare this data to identify similar failures,

and how to compare similar failures in the source code to identify and document a

defect pattern. The training of the Pilot group was different from the one of groups

A and B because the forms used for documenting failures and defect patterns were

different. After training, they received a brief explanation about Task 1 and the

materials of this task were distributed, i.e., the forms of task 1 (see Appendix C

and D) together with the logs (see Appendix B) and the application source code.

Participants had 40 minutes to perform Task 1, which consisted of extracting data

of six failures from logs and identifying and documenting two defect patterns

found in the application source code. In the end, they filled the follow-up form

and uploaded it to a folder or send it by e-mail together with the digital version of

the task form.

After performing Task 1, the same groups of maintainers performed Task 3.

We expected Task 2 to be more difficult and time-consuming than Task 3 and less

relevant for observing the effectiveness of the maintainers on PDMs main

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 74

reasoning tasks. Therefore, we decided to change the order of the tasks. The Pilot

group received a 10 minutes break between Task 1 and Task 3, group A

performed Task 1 and Task 3 in two different days, finally group B did not

receive any interval between the tasks.

We started Task 3 by distributing the forms of the task (see Appendix F and

G) and the defect pattern documentation presented in Table 4. After that, we

applied a training session of 20 minutes regarding Task 3. In this session, we

showed how to identify false positives and how to document new defect fixing

alternatives. Thereafter, the maintainers had 40 minutes to inspect 16 alerts of a

defect pattern for classifying them into a defect or a false positive. This set of

alerts contains 3 defects and 13 false positives that include two new fixing

alternatives for the defect pattern. Finishing Task 3, maintainers filled the follow-

up questionnaire and uploaded it to a folder or send it by e-mail together with the

digital version of the task form. At the end of Task 3, we asked the maintainers to

fill the TAM questionnaire (see Appendix H) and upload it to a folder or send it

by e-mail to us.

Group B was the only one to apply Task 2 because only this group had time

for one more task in their course. Task 2 was applied on a different day of the

other two tasks. We started distributing the form of the task (see Appendix E),

then we applied 20 minutes of training on Task 2 including concepts of AST and

SonarQube technology for custom rules programming. After that, the maintainers

had 50 minutes for performing the rule. Finally, they filled the follow-up form and

uploaded it to a folder or send it by e-mail together with the digital version of the

task form.

6.2.5. Questions and Variables

In this section, we describe our questions and variables. The first knowledge

question we wanted to answer (RQ7) concerned the effectiveness of maintainers,

i.e., for each task of the study we want to understand how effective maintainers

are on performing the task. One indicator of the effectiveness of a maintainer is to

complete a task and perform it correctly, i.e., completing the task with success.

The percentage of maintainers that completed each task with success might give

us insights about how easy it is for a maintainer to perform the task effectively.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 75

Having this in mind, we aim at answering the following more detailed questions

regarding the effectiveness:

RQ07. How effective are maintainers applying PDM for preventing defects?

a. How effective are maintainers identifying and documenting defect

patterns?

b. How effective are maintainers programming a static analysis rule?

c. How effective are maintainers identifying and documenting fixing

alternatives present in false positives of a defect pattern?

Some knowledge and experiences may influence the application of PDM.

Hence, we were also interested in having insights on how these pieces of

knowledges and experiences affect the effectiveness of maintainers in applying

PDM. Therefore, in our study, we additionally investigated whether knowledge

and experience in Java, JEE, static analysis programming, stack trace reading, and

source code inspection have an influence on applying PDM, as well as,

maintainers’ previous experience with software development, software

maintenance, and with the software that was used in the study.

The second knowledge question we wanted to answer (RQ8) concerned the

acceptance of PDM by maintainers. Therefore, we used the TAM questionnaire

(see Table 22) to evaluate the acceptance of PDM by the maintainers. Based on

the TAM constructs, we answer the following questions:

RQ08. Would maintainers accept to use PDM?

a. How do maintainers perceive PDM regarding its ease of use?

b. How do maintainers perceive PDM regarding its usefulness?

c. Do maintainers intend to use PDM after experimenting it?

As TAM makes positive questions about the technology (see Table 22), we

want to know the frequency in which maintainers agree with the questions.

Additionally, we wanted to understand better the difficulties found by maintainers

during PDM application. The frequency of specific difficulties found by

maintainers might indicate their importance and improvement opportunities for

the PDM method.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 76

Table 23 and Table 24 describe the set of independent and dependent

variables together with their types and scales.

Table 23: Independent variables

Type Variables name and definition Scale

Level of

experience of

maintainers

(L-Java) in Java

(L-JEE) in JEE

(L-STR) in stack trace reading

(L-SCI) in source code inspection

(L-SARP) in static analysis rule

programming

1 = No experience

2 = I studied in a

classroom or in a book

3 = I actively practiced in

a classroom project

4 = I used it in a project in

industry

5 = I used it in several

projects in industry

Time of

experience of

maintainers

(T-SD-I) in software development

in the industry

(T-SM-I) in software maintenance

in the industry

Years

Table 24: Dependent variables

Type Variables name and definition Scale

Percentage

of

maintainers

(P-CI-DP) that correctly identified all defect patterns

(P-CD-DP) that correctly documented all defect

patterns

(P-Diff-DP) per reported difficulty found during defect

pattern identification and documentation

(P-CP-SARP) that correctly programmed the static

analysis rule

(P-Diff-SARP) per reported difficulty found during

static analysis rule programming

(P-CI-FA) that correctly identified all fixing

alternatives

(P-CD-FA) that correctly documented all fixing

alternatives

Percentage

(0% to

100%)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 77

(P-Diff-FA) per reported difficulty found during

identification and documentation of fixing alternatives

(P-A-Q1) that agree or strongly agree in Q1 of TAM

(P-A-Q2) that agree or strongly agree in Q2 of TAM

(P-A-Q3) that agree or strongly agree in Q3 of TAM

(P-A-Q4) that agree or strongly agree in Q4 of TAM

(P-A-Q5) that agree or strongly agree in Q5 of TAM

(P-A-Q6) that agree or strongly agree in Q6 of TAM

(P-A-Q7) that agree or strongly agree in Q7 of TAM

(P-A-Q8) that agree or strongly agree in Q8 of TAM

(P-A-Q9) that agree or strongly agree in Q9 of TAM

Number of

defect

patterns

(N-CD-D) correctly documented by a maintainer Integer

(0, 1 or 2)

6.2.6. Experiment Design

The study performed is characterized as an observational study. We had one

treatment (PDM) that was applied by three different groups on one object. This

design served our purpose since we wanted to observe how effective they were in

applying the treatment and their acceptance of PDM. We also wanted to have

insights about the characteristics of maintainers that influence the application of

each step of the PDM method.

6.3.Execution

The execution procedure followed the experiment planning tasks almost

strictly. Hence, it is possible to understand our execution procedure by referring to

Section 6.2.4. A difference between our planning and execution was the pilot

group had been discarded after we have found problems with the initial materials.

Details about this problem are presented in the next section. The analysis

procedures are described hereafter in the analysis section together with their

results.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 78

6.4.Results

After executing the study, the materials were analyzed for determining the

value of the variables to answer the stated questions. Some variables must be

determined by a researcher, such as the number of correctly identified or

documented defect patterns. In these cases, one researcher inspected the forms and

determined whether the maintainers correctly identified or documented each item.

The procedure of determining whether a maintainer correctly identified a defect

pattern or a fixing alternative include reviewing all fields in the respective form

and determining whether she captured the general idea of the pattern or fixing

alternative. In another way, the procedure for deciding whether the documentation

of a defect pattern or fixing alternative is correct, we searched for errors in the

specific field of documentation.

 Additionally, qualitative data was analyzed to determine the most frequent

difficulties of the maintainers. The qualitative analysis included open coding of

the qualitative data using the constant comparative method (SEAMAN, 1999) and

counting the most common codes.

The remainder of this section is organized by the tasks executed during the

study, reporting on the effectiveness, the profile of most effective maintainers and

their difficulties. The last section shows the analysis of PDM acceptance,

presenting the analysis regarding questions stated for the whole method and not its

isolated tasks. The answers and discussion of the research questions based on the

analysis results follow in Section 6.5.

6.4.1. Task 1 – Failure Analysis and Defect Pattern Identification

Table 25 and Table 26 present the percentage and number of maintainers

that correctly identified and documented none, one, or two defect patterns during

task 1, respectively. 48 maintainers completed task 1 by sending the task 1 form to

the researchers. As task 1 had two defect patterns, the percentage of maintainers

that were able to identify all defect patterns (P-CI-DP) ranged from 12% to 30%

whereas the percentual of maintainers that correctly documented them (P-CD-DP)

ranged from 0% to 30%.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 79

Table 25: Percentage of maintainers that correctly identified defect

patterns

Correctly Identified / Number of

Defect Patterns

n 0 1 2

Pilot 9 44% (4) 44% (4) 12% (1)

Group A 23 52% (12) 18% (4) 30% (7)

Group B 16 38% (6) 50% (8) 12% (2)

Table 26: Percentage of maintainers that correctly documented defect

patterns

Correctly Documented / Number of

Defect Patterns

n 0 1 2

Pilot 9 89% (8) 11% (1) 0% (0)

Group A 23 61% (14) 9% (2) 30% (7)

Group B 16 44% (7) 50% (8) 6% (1)

Regarding materials validation, we used two formats of defect pattern

documentation. The Pilot (n=9) group used the form for defect pattern

documentation while groups A and B (n=39) used the pattern language. We found

that individuals using a pattern language document more defect patterns correctly

than the ones using a form (Wilcoxon-Mann-Whitney test on N-CD-DP,

W=120.5, p < 0.05, one-sided). As we have found this difference, hereafter we

discarded Pilot group from our analysis, thus considering only Groups A and B

(n=39), which used a pattern language for documenting defect patterns.

The profile consists of the level and time of experience (see Table 23) of

maintainers. With this respect, we have an interest in the profile of maintainers

that correctly identified and documented all defect patterns in task 1 (n=8). Figure

5 shows, in its left side, a boxplot of this profile. We can observe that most of the

maintainers had at least practice in a classroom in Java and stack trace reading

while they had experience in the industry in source code inspection. They had less

experience in JEE and static analysis rule programming, corresponding in most of

the cases to theoretical knowledge in JEE and no knowledge at all in static

analysis rule programming. The experience time in the industry of most of the

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 80

maintainers was about one year in software development and less than one year in

software maintenance.

To understand differences in their profiles, we split the maintainers into two

groups, the ones that correctly identified and documented all patterns (success,

n=8) and the complementary group (other, n=31). For each knowledge or

experience variable (L-Java, L-JEE, L-STR, L-SCI, L-SARP, T-SD-I, T-SM-I),

we compared their distribution using Wilcoxon-Mann-Whitney test with

alternative hypothesis of success group have higher values than others. The results

of the tests are presented in Table 27. We found a significant difference in L-Java,

L-STR, L-SCI variables (p < 0.05). Figure 5 presents the boxplot of variables

distribution split into success and others group.

Figure 5: Boxplot of the profile of maintainers that correctly identified

and documented all defect patterns in task 1 (Success) and complementary

group of maintainers (other)

Besides analyzing the effectiveness and the profile of the effective

maintainers, we also analyzed the maintainers’ difficulties during task 1 based on

the answers provided to an open question. Therefore, we open coded the

qualitative data and counted the most common codes. Table 28 presents the results

of this counting. As the groups of maintainers are different, we present the results

separately per group. We can observe that the main difficulties of all groups

involve somehow documenting and identifying defect patterns. Thereafter we also

provide some examples of difficulties reported by the maintainers for Task 1.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 81

Table 27: Results of Wilcoxon-Mann-Whitney tests between Success

and Other groups in task 1 (n1=8, n2=31, one-tailed)

Variable W p

L-Java 169 0.026*

L-JEE 128 0.441

L-STR 202 0.002*

L-SCI 180 0.020*

L-SARP 82 0.946

T-SD-I 162 0.077

T-SM-I 138 0.284

Table 28: Most frequent difficulties of maintainers in Task 1

Group of

Maintainers

P-Diff-DP Difficulty description (code)

Group A 5 of 23 (22%) Identifying the patterns

5 of 23 (22%) Documenting the patterns

5 of 23 (22%) Identifying a solution for the defect pattern

4 of 23 (17%) Lack of experience (Java, JEE and App Code)

Group B 10 of 16 (63%) Documenting the patterns

5 of 16 (31%) Identifying the pattern

Examples of difficulties reported by group A and the related codes are

provided hereafter:

“The main difficulty was confirming if the same exception

types form a pattern in the source code.” (Identifying the

patterns)

“Representing the defect patterns in a generalized

manner.” (Documenting the patterns)

“To know the best way of fixing the code (with a try/catch

or if/else)” (Identifying a solution for the defect pattern)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 82

“No familiarity with the method, and the technology

(servlets)” (Lack of experience)

Examples of difficulties reported by group B and the related codes follow:

“It was the first time I used this kind of form for

documenting defect patterns. So, it took a while before it flows

regularly” (Documenting the patterns)

“Recognizing patterns in different places of the source

code and using the generic language to document the patterns.”

(Identifying the pattern and Documenting the patterns)

6.4.2. Task 2 - Static Analysis Rule Programming

Group B was the only one that performed task 2. This group had 18

maintainers, but only eight remained until the end of the task sending the

materials for evaluation. No maintainer was able to program the proposed static

analysis rule correctly. In case, the percentage of maintainers that correctly

programmed the static analysis rule was 0%.

We also analyzed the maintainers’ difficulties during task 2 based on the

answers provided to a related open question. Therefore, we open coded the

qualitative data and counted the most common codes. Table 29 presents the most

common codes found. We can observe that the time to perform the task was the

main difficulty reported followed by the concepts involved and difficulties on

implementation. Thereafter we also provide some examples of the difficulties

reported by the maintainers for task 2.

Table 29: Most frequent difficulties of maintainers on task2

P-Diff-SARP Difficulty (code)

6 of 8, 75% Time was not enough for performing the task

4 of 8, 50% Understand the concepts

4 of 8, 50% Difficulties on implementation

3 of 8, 38% Lack of experience

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 83

Examples of difficulties reported by group B and the related codes are presented

hereafter:

“The time was short for understanding the topic, and this

topic is complicated…” (Time was not enough for performing the

task)

“Understand the methods, classes and how to use them to

solve the problem.” (Understand the concepts)

“Unfamiliarity with the topic, difficulty to implement the

methods, even after understanding I did not know how to

program.” (Difficulties on implementation)

“Low knowledge regarding static analysis causing serious

difficulties for completing the task.” (Lack of experience)

6.4.3. Task 3 - Rule Evaluation and Context Analysis

Table 30 and Table 31 present the percentage and number of maintainers

who correctly identified and correctly documented zero, one, or two fixing

alternatives during task 3, respectively. 28 maintainers completed task 3 by

sending the form to the researchers. As task 3 had two fixing alternatives, the

percentage of maintainers that were able to identify all fixing alternatives (P-CI-

FA) ranged from 0% to 65% within the groups A and B whereas the ones that

correctly documented all fixing alternatives (P-CD-FA) ranged from 0% to

37.5%.

Table 30: Percentage of maintainers that correctly identified fixing

alternatives

Correctly Identified / Number of

Fixing Alternatives

N 0 1 2

Group A 20 5% (1) 95% (19) 0% (0)

Group B 8 0% (0) 37% (3) 63% (5)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 84

Table 31: Percentage of maintainers that correctly documented fixing

alternatives

Correctly Documented / Number of

Fixing Alternatives

N 0 1 2

Group A 20 65% (13) 35% (7) 0% (0)

Group B 8 25% (2) 37.5% (3) 37.5% (3)

The profile consists of the level and time of experience (see Table 23) of

maintainers. In case, we have an interest in the profile of maintainers that

correctly identified and documented all fixing alternatives in task 1 (n=3). Figure

6 shows, in its left side, a boxplot of this profile. We can observe that most of the

maintainers had at least practice in a classroom in Java, JEE and source code

inspection. They had less experience in stack trace reading and static analysis rule

programming, corresponding in most of the cases a theoretical knowledge. All

maintainers had no experience time in the industry. The three maintainers that

correctly identified and documented all fixing alternatives are from group B.

Table 32: Results of Wilcoxon-Mann-Whitney tests between Success

and Other groups in Task 3 (n1=3, n2=25, one-tailed)

Variable W p

L-Java 31.5 0.712

L-JEE 47.5 0.213

L-STR 50.5 0.682

L-SCI 36 0.547

L-SARP 23.5 0.865

T-SD-I 18 0.942

T-SM-I 24 0.887

We split maintainers into two groups, the ones that correctly identified and

documented all fixing alternatives (success, n=3) and the complementary group

(other, n=25). For each knowledge or experience variable (L-Java, L-JEE, L-STR,

L-SCI, L-SARP, T-SD-I, T-SM-I), we compared their distribution using

Wilcoxon-Mann-Whitney test with alternative hypothesis of success group have

higher values than others. The results of the tests are presented in Table 32. We

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 85

did not find any significant difference between the two groups (p < 0.05). Figure 6

presents the boxplot of variables distribution split into success and others group.

Figure 6: Boxplot of the profile of maintainers that correctly identified

and documented all fixing alternatives in task 3 (Success) and the

complementary group of maintainers (other)

 As done for the other tasks, we also analyzed the maintainers’ difficulties

during task 3 based on the answers provided to a related open question. Therefore,

we open coded the qualitative data and counted the most common codes. Table 33

presents the results of this counting. As the groups of maintainers are different, we

present the results separately per groups. Thereafter, we also present some

examples of the reported difficulties of maintainers.

Table 33: Most frequent difficulties of maintainers on task 3

Group of

Maintainers

P-Diff-FA Difficulty

Group A 6 of 20, 30% Understand the app source code

Group B 3 of 8, 30% Lack of experience with the task

An example of description of the difficulty reported by a participant of

Group A:

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 86

“Sometimes the scope of the method can be really big, so

inspecting every scope to check validation functions can become

confusing.” 19 (Understand the app source code)

An example of description of the difficulty reported by a participant of

Group B:

“Lack of practice in activities like this.” (Lack of

experience with the task)

6.4.4.TAM – Technology Acceptance Model

Table 34: Percentage of maintainers that strongly agree or agree with

TAM questions regarding PDM method.

TAM Dimension Question Percentage of Maintainers

that Strongly Agree or Agree

Usefulness Q1 77%

Q2 74%

Q3 81%

Q4 70%

Ease of use Q5 26%

Q6 30%

Q7 34%

Q8 34%

Intention to use Q9 15%

27 maintainers filled the TAM questionnaire and sent them to the

researchers. Table 34 presents the percentage of the maintainers that agree or

strongly agree with each question of TAM questionnaire (See Table 22). We can

19 One point of inspection (PrincipalTermo.java line 378) is inside a long method (more

than 400 lines of code). Although inspecting this method was a challenge for maintainers, a simple

static analysis rule (see Figure 4) produced by PDM can correctly classify this line as having no

defect.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 87

observe that most the of maintainers found PDM useful, but not easy to use and

that they do not intend to use PDM in their work. Further discussions of the

results follow in the next section.

6.5.Discussion

In this section we answer and discuss our research questions, presenting the

main related findings and insights.

RQ7. How effective are maintainers in applying PDM for preventing

defects?

a. How effective are maintainers in identifying and documenting

defect patterns?

Regarding the effectiveness of maintainers applying PDM, only 12% of the

maintainers in group A and 30% in group B identified and documented all defect

patterns. These results showed that after 20 minutes of training in task 1, few

maintainers could effectively apply it. This fact could indicate that more training

would be needed or that the application of task 1 of PDM needs to be facilitated in

some way.

 We collected and analyzed the difficulties found by maintainers during

PDM application. During Task 1, the documentation format hindered the pilot

group in documenting defect patterns. We could notice this problem by observing

maintainer’s comments on difficulties in this task and a statistically significant

difference between the pilot group and the other groups. After changing the

documentation format, groups A and B performed better than the pilot group in

documenting defect patterns. However, groups A and B also complained about

difficulties in identifying and documenting defect patterns, showing that this task

could be indeed tricky.

 The maintainers who correctly identified and documented defect patterns

had superior experience in Java, stack trace reading and source code inspection.

Thus, this type of knowledge possibly influences in performing task 1. The levels

of experience of maintainers that successfully completed task 1 were in its

majority industrial, while other maintainers had only academic experience. This

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 88

fact might indicate that an appropriate profile for performing task 1 is a maintainer

with industrial experience in defect fixing using the technology of the software in

which PDM will be applied. Defect fixing activity typically involves stack trace

reading and source code inspection. It is unclear if the industrial expertise in those

aspects might be replaced by better training of maintainers for performing task 1.

Hence, further experiments are needed for investigating this hypothesis.

b. How effective are maintainers in programming a static analysis

rule?

 In task 2, no maintainer was able to program the proposed static analysis

rule correctly. The main complaint of maintainers on this task was the limited

time for programming (50 min), the difficulty to comprehend the concepts

involved (Abstract Syntax Tree and Visitor Pattern), and difficulties for

programming the rule using those concepts and SonarQube. Task 2 was the most

challenging task to be performed by the maintainers selected for the study. This

fact might indicate that programming static analysis rules are a particular task and

that it might be difficult to find a professional that is already skillful on it. In the

case of training professionals in static analysis rule programming, a single training

session with 20 minutes of presentation and 50 minutes of exercises will not

suffice.

c. How effective are maintainers in identifying and documenting

fixing alternatives present in false positives of a defect pattern?

 As well as in task 1, few maintainers were able to identify and document

fixing alternatives during task 3 correctly. No maintainer of group A and 63% of

the maintainers of group B correctly identified all fixing alternatives while no

maintainer of group A and 37.5% of group B correctly documented them. The

maintainers that correctly identified and documented all fixing alternatives had no

significant difference in any knowledge and experience variables to other

maintainers. As stated before, group B had previous experience with the software

to which PDM was applied by using it in the course assignment. This fact might

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 89

indicate that previous experience with the software being maintained positively

affects the performance of identifying fixing alternatives.

The main complaints of maintainers regarding task 3 for group A were

related to understanding the application source code, and for group B to the lack

of experience on the task. The group A complaint reinforces the insight of

experience with software affects the performance in task 3. When the maintainer

has this experience, as in the case of group B, the main complaint was not the

software but the experience with the task.

RQ8. Would maintainers accept to use PDM?

a. How do maintainers perceive PDM regarding its ease of use?

b. How do maintainers perceive PDM regarding its usefulness?

c. Do maintainers intend to use PDM after experimenting it?

The TAM questionnaire was used to access the PDM acceptance by

maintainers. Table 34 showed that most maintainers perceive PDM as useful, but

not easy to use. This perception may have influence in the intention to use PDM

since few maintainers answered agreeing with this question in the TAM

questionnaire. These perceptions show that PDM application should be facilitated

for improving its acceptance by maintainers.

6.6.Threats to Validity

In this section, we discuss the threats to the validity of the study in the four

types described by Wohlin et al. (2012), i.e., internal, external, construct and

conclusion.

Internal Validity. During the study, some maintainers did not perform all

tasks. As an uncontrollable condition of mortality, some maintainers left the

experimentation session before completing task 3, especially in group B. This

group had classes at night, and as the end of the class come close some of them

naturally left the class. This condition made the number of subjects vary

significantly from task 1 (n=39) to task 3 (n=28). Hence, the results of task 3

might have been affected by this variation. Furthermore, only one researcher

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 90

performed the qualitative analysis, which could be influenced by the researcher

point of view.

Construct Validity. The task selection, order of application, and time to

complete the tasks could have affected the results of the study. We have selected

to perform task 1 and task 3 in all groups, while we applied task 2 only in group

B. This task to group assignment was made considering the constrained time in

the classes of the groups. Additionally, group B received the tasks in a different

order in which they were designed in PDM, receiving task 1, task 3 and thereafter

task 2. As PDM steps interact, the changing in order or avoiding steps might

affect the effectiveness in applying PDM and the perception of maintainers about

the method. Furthermore, the time of training and for performing each task were

also constrained by the time available in classes of the groups and might have

affected the results of the study.

Conclusion Validity. Our purpose was to conduct an observational study to

evaluate whether other maintainers would be able to apply the PDM steps. Given

our limited sample size, we had no further aims regarding conclusion validity.

Indeed, while some maintainers successfully completed the steps, their number

was not enough to make claims about their characteristics. It is noteworthy that,

although we used a large group of students in our research (n=54), they were split

into three different groups and only a few of them correctly completed each task.

Hence, while we analyzed the characteristics of those groups against their

complementary groups, the confidence in the results is affected by our sample

size.

External Validity. Our observational study considered a specific setting

(e.g., software, technology, students). Hence external validity is limited.

Furthermore, as is common with empirical studies conducted with students, the

results concern novice maintainers and their characteristics, not being

generalizable.

6.7. Concluding Remarks

 We have evaluated PDM regarding maintainers’ effectiveness in applying it

and their acceptance of the method. In this way, we observed 54 novice

maintainers applying PDM steps split into three tasks, i.e., failure analysis and

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Evaluation of Acceptance of PDM 91

defect pattern identification (task 1), static analysis rule programming (task 2),

and rule evaluation and context analysis (task 3). The maintainers had difficulties

during PDM steps application, and few of them correctly completed the tasks. The

difficulties found included the defect pattern documentation format, which was

changed during the study, the identification of defect patterns and their fixing

alternatives, the static analysis rule programming, as well as the understanding of

subject software source code and difficulties caused by lack of experience with

the tasks.

We analyzed the profile of maintainers that correctly completed the tasks.

We found that the ones that correctly completed task 1 had superior experience in

the subject software programming language (Java), stack trace reading, and source

code inspection; while in task 3 the maintainers had previous experience with the

software to which PDM was applied. No maintainer correctly completed task 2.

Finally, the maintainers answered a TAM questionnaire about PDM

acceptance. Most of them found PDM useful but not easy to apply and do not

intend to use PDM at work. However, the perceived ease of use of PDM could be

hindered by the conditions of the limited time of an observational study, thus

affecting the intention of use.

In this way, we had insights about the effectiveness of maintainers applying

PDM and their acceptance. We also identified factors of influence that can help to

identify appropriate professionals for applying each step of the PDM method.

However, the results also indicate that proper training is needed for applying the

method, especially on static analysis programming.

As future work, we intend to reproduce this study with more experienced

maintainers and with more time of training in PDM. We also plan to develop

support tools to facilitate a PDM application.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

7 Conclusion

Failures generated by unhandled exceptions affect the reliability, usability,

and security of web applications. Several studies showed the presence of

unhandled exceptions in web applications (KALLEPALLI; TIAN, 2001;

HUYNH; MILLER, 2005; GOŠEVA-POPSTOJANOVA et al., 2006; JAFFAL;

TIAN, 2014;). There are some solutions for enforcing policies to handle

exceptions (BARBOSA et al., 2016; BARBOSA; GARCIA, 2018). However,

those solutions are limited, and fall short of dealing with unhandled exceptions

generated by third-party libraries and unchecked exceptions. Additionally, it is not

clear whether those solutions could be used with scripting languages, such as PHP

and Python, which are commonly used in web applications.

Unhandled exceptions might be latent in the source code, thus not

presenting failures in logs. Those unhandled exceptions need to be located for

proper fixing. However, it is possible to avoid exceptions to be thrown in several

ways, and each application has its approaches to deal with exceptions. This

specificity hinders general linters to automatically locating unhandled latent

exceptions. Furthermore, automated solutions for testing web applications do not

focus on unhandled latent exceptions (GAROUSI et al., 2013; DOGAN; BETIN-

CAN; GAROUSI, 2014;).

In this thesis, we proposed PDM, a method that iteratively uses static and

dynamic analysis to find, correct, and prevents unhandled exceptions in web

applications. PDM help maintainers to automate the unhandled exception

localization by guiding them to find defect patterns and programming static

analysis rules that locate those patterns. We successfully applied PDM in two

industrial cases, reused the rules generated in other software within- and cross-

company and evaluated PDM acceptance by maintainers.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Conclusion 93

7.1. Revisiting the Thesis Contributions

Initially, we aimed to support industrial partners in solving a recurrent

problem of unhandled exceptions in a financial web application implemented in

Python. As the application has no reliable documentation, no automated testing,

and high people turnover, we realized that there was no appropriate approach to

deal with unhandled exceptions in this context. An inspection could be performed,

but the entire software would need to be inspected, which would represent a large

effort. A software process improvement approach could be implemented, solving

the problem during evolution, but not dealing with unhandled latent exceptions. A

cost-effective solution was needed to locate and fix the unhandled latent

exceptions and to avoid the reintroduction of the problem.

We noticed that failures in this software were similar and could represent

the same error repeated several times, thus forming defect patterns. However, a

systematic approach was needed to identify, document and locate those patterns,

finding not only the unhandled latent exceptions but also informing maintainers

when the same defect pattern has been reintroduced. Within this context, we

proposed Pattern-Driven Maintenance (PDM), a systematic method to help

maintainers dealing with defect patterns using automation.

We applied PDM in two industrial software systems, showing its

effectiveness (RQ1), the precision and recall of automation produced (RQ2), and

the influence factors (RQ3) for applicability not only for the software for which

PDM was initially designed but also for other software. In this way, we state our

first and foremost contribution:

1st Contribution. An empirically evaluated method for preventing

unhandled latent exception in web applications.

After investigating the effectiveness of PDM, a hypothesis on the reusability

of the defect patterns found during the study raised. For checking this hypothesis,

we selected some software systems with the similar architecture of the ones in

which the patterns were found and checked patterns reusability. Some of the

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Conclusion 94

defect patterns could be successfully reused. We evaluated the reusability in

within- and cross-company environments (RQ4), showing that it is possible to

reuse PDM produced defect patterns and static analysis rules. We investigated the

benefits of reusing rules (RQ5) as well as factors of influence for reusing rules

(RQ6). Table 35 presents the patterns identified during the thesis together with the

precision and recall of the static analysis rules produced.

Table 35: Defect patterns found during the thesis with the evaluation of

static analysis rules produced

Defect Pattern Technology Software Precision Relative Recall

Django ORM

get

Python/Django inFinance 68% 100%

CADDs System 75% N/A

Date conversion Python/Django inFinance 59% 100%

Float

conversion

Python/Django inFinance 67% 100%

Unchecked Id PHP SAD System 89.5% N/A

Register System 40% N/A

Unchecked

Integer

PHP SAD System 100% N/A

Date conversion PHP SAD System 100% N/A

Integer

conversion

Java SisGEE System 75% 100%

The reuse of defect patterns and static analysis rules produced by PDM

might not be immediate. The patterns and rules could need to be adjusted, and we

present some recommendations on how to act to proper reuse the defect patterns

produced. These recommendations involve how to check whether the static

analysis rule reused is correctly working and how to adjust them to new software.

Hence, we state our second contribution:

2nd Contribution. Guidance on reusing rules produced by PDM.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Conclusion 95

Table 36: Papers produced among the thesis

Paper Chapter Status

MENDONÇA, D. S.; Staa A.v. . Um Método Semi-Automatizado

para Manutenção Corretiva e Preventiva de Sistemas Web. In:

XVI Simpósio Brasileiro de Qualidade de Software (SBQS), 2017,

Rio de Janeiro. XV Workshop de Teses e Dissertações em

Qualidade de Software, 2017. p. 80-88.

3,4 Published

MENDONÇA, Diogo S. et al. Applying pattern-driven

maintenance: a method to prevent latent unhandled exceptions

in web applications. In: Proceedings of the 12th ACM/IEEE

International Symposium on Empirical Software Engineering

and Measurement (ESEM’18). ACM, 2018. p. 31.

3, 4 Published

MENDONÇA, Diogo S.; VON STAA, Arndt; KALINOWSKI, Marco.

Pattern-driven maintenance: a method to prevent unhandled

latent exceptions in web applications. Journal of Systems and

Software (JSS). Elsevier, 2019.

3,4,5,6 Submitted

After checking the reuse of defect patterns produced by PDM, we still had

doubts if maintainers would effectively apply (RQ7) and accept (RQ8) PDM. This

doubt was justified because only the maintainer that created the method (the

author of this thesis) have applied PDM and he have a senior level of experience.

Hence, we decided to evaluate PDM with novice maintainers. Our findings

showed characteristics of maintainers that successfully applied each step of PDM,

thus reflecting the knowledge and experiences needed. This finding could help to

proper select or training maintainers for applying the method. The evaluation of

acceptance showed that most of the maintainers found PDM useful, but not easy

to apply. One hypothesis for justifying this finding is that most of them did not

have the knowledge and experiences needed to apply the method effectively. This

hypothesis needs further investigation and motivates our future work. In this way,

we state our third contribution:

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Conclusion 96

3rd Contribution. Guidance for effectively selecting or training

maintainers for applying PDM.

Table 36 presents the papers produced throughout the thesis. The studies

presented in chapters 5 and 6 were conducted in the second semester of 2018, and

for this reason, are not yet published.

7.2. Limitations

There are some limitations to the PDM method. First, the pattern

identification depends on the ability of the maintainer in comprehending source

code, comparing the multiple defects that produce the same failure and abstracting

its common parts. As we presented in chapter 6, the minority of novice

maintainers could correctly identify defect patterns. This limitation can be

mitigated by proper training or selection of maintainers that will apply the PDM

method. Another way to mitigate this limitation is to have support tools to

facilitate maintainers to identify and document defect patterns.

The precision of automation depends on the static analysis tools selected for

applying PDM. Some defect patterns had abstractions that could not be fully

implemented in the selected static analysis tool, in our case SonarQube. Hence,

the tool selection should consider the abstraction needed to implement rules. As

we observed in chapter 4, the data flow and control flow analysis are needed for

adequately implementing common rules to locate unhandled latent exceptions.

The PDM method starts to detect defect patterns by using application server

production logs. Hence, defects related to patterns that were never exercised and

did not produce a failure cannot be detected by the PDM method. Testing logs

could be used instead of production logs to mitigate this problem; however,

proper test cases need to be designed for the log to be representative.

Finally, the studies of the effectiveness of maintainers on applying PDM

and their acceptance were conducted with novices. In this case, the external

validity of the study is limited, needing replication of the study with more

experienced maintainers for mitigating this limitation.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Conclusion 97

7.3. Future Work

As future work, we intend to evaluate PDM acceptance by experienced

maintainers. We do believe that experienced maintainers could have different

results on applying PDM than novice ones. Their feedback can help to improve

the PDM method further and to evaluate PDM acceptance better.

We also intend to develop tools to facilitate a PDM application. The

difficulties collected during PDM acceptance study showed that novice

maintainers have difficulties in identifying and documenting defect patterns. They

also have problems in implementing static analysis rules. Tools support on these

activities could help novice maintainers in effectively applying PDM.

The PDM method should be modified to be used to locate other kinds of

defects. Some necessary conditions to use PDM are the defects form patterns and

must exist a way to initially identify those patterns. An example of a possible

application of PDM is for dealing with architectural violations. Those violations

may form anti patterns, and an initial inspection of the software would be used to

identify them. As future work, we intend to experiment PDM with other kinds of

defects than unhandled exceptions.

The PDM method can also be adjusted to work not only in the back-end of

web applications but also in front-end. Web browser logs would be used to

perform PDM in the front-end of web applications.

The PDM method can be more automated. In this thesis, we automated

failure analysis, but there are possibilities of automating other steps of the method,

such as patterns identification, static analysis rule programming, context analysis.

Finally, we proposed in this thesis a pattern language for documenting

defect patterns. The pattern language proposed is tight to the programming

language where the defect patterns occur. The specification of a programming-

language-agnostic pattern language would allow defining defect patterns that

matches defects in more than one programming language.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

8 References

ALANNSARY, M. O. Quality improvement of SaaS (Software as a

Service) in the Cloud. [s.l.] Southern Methodist University, 2016.

ALANNSARY, M. O.; TIAN, J. Measurement and Prediction of SaaS

Reliability in the Cloud. Software Quality, Reliability and Security Companion

(QRS-C), 2016 IEEE International Conference on. Anais...2016

AYEWAH, N. et al. Using Static Analysis to Find Bugs. IEEE Software, v.

25, n. 5, p. 22–29, 2008.

BANERJEE, S.; SRIKANTH, H.; CUKIC, B. Log-Based Reliability

Analysis of Software as a Service (SaaS). 2010 IEEE 21st International

Symposium on Software Reliability Engineering. Anais...IEEE, nov.

2010Disponível em: <http://ieeexplore.ieee.org/document/5635046/>

BARBOSA, E. A. et al. Enforcing Exception Handling Policies with a

Domain-Specific Language. IEEE Transactions on Software Engineering, v.

42, n. 6, p. 559–584, 2016.

BARBOSA, E. A.; GARCIA, A. Global-Aware Recommendations for

Repairing Violations in Exception Handling. IEEE Transactions on Software

Engineering, v. 44, n. 9, p. 855–873, 2018.

BASILI, V.; CALDIERA, G.; ROMBACH, H. D. Goal Question Metric

(GQM) Paradigm. In: Encyclopedia of Software Engineering. [s.l: s.n.].

BAU, J. et al. State of the art: Automated black-box web application

vulnerability testing. Proceedings - IEEE Symposium on Security and Privacy.

Anais...2010

BELLER, M. et al. Analyzing the State of Static Analysis: A Large-Scale

Evaluation in Open Source Software. 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER). Anais...2016

BOURQUE, P.; FAIRLEY, R. E.; OTHERS. Guide to the software

engineering body of knowledge (SWEBOK (R)): Version 3.0. [s.l.] IEEE

Computer Society Press, 2014.

BRIAND, L. C. Software documentation: how much is enough?

Software Maintenance and Reengineering, 2003. Proceedings. Seventh European

Conference on. Anais...2003

CHILLAREGE, R. Orthogonal Defect Classification, Ch. 9 of Handbook of

Software Reliability Engineering, M. Lyu Ed. IEEE Computer Society,

McGraw-Hill, 1995.

DAS, S.; LUTTERS, W. G.; SEAMAN, C. B. Understanding

Documentation Value in Software Maintenance. Proceedings of the 2007

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 99

Symposium on Computer Human Interaction for the Management of Information

Technology. Anais...: CHIMIT ’07.ACM, 2007Disponível em:

<http://doi.acm.org/10.1145/1234772.1234790>

DAVIS, F. D. Perceived usefulness, perceived ease of use, and user

acceptance of information technology. MIS quarterly, p. 319–340, 1989.

DOGAN, S.; BETIN-CAN, A.; GAROUSI, V. Web application testing: A

systematic literature review. Journal of Systems and Software, v. 91, p. 174–

201, 2014.

EBERT, F.; CASTOR, F. A study on developers’ perceptions about

exception handling bugs. IEEE International Conference on Software

Maintenance, ICSM. Anais...2013

ELBAUM, S.; KARRE, S.; ROTHERMEL, G. Improving web application

testing with user session data. Proceedings of 25th International Conference on

Software Engineering, p. 49–59, 2003.

ERSOY, E.; SÖZER, H. Extending static code analysis with application-

specific rules by analyzing runtime execution traces. International Symposium

on Computer and Information Sciences. Anais...2016

FORWARD, A.; LETHBRIDGE, T. C. The relevance of software

documentation, tools and technologies: a survey. Proceedings of the 2002

ACM symposium on Document engineering. Anais...2002

GAMMA, E. et al. Design Patterns – Elements of Reusable Object-

Oriented Software. [s.l: s.n.].

GAROUSI, V. et al. A systematic mapping study of web application testing.

Information and Software Technology, v. 55, n. 8, p. 1374–1396, 2013.

GOŠEVA-POPSTOJANOVA, K. et al. Empirical Characterization of

Session--Based Workload and Reliability for Web Servers. Empirical Software

Engineering, v. 11, n. 1, p. 71–117, mar. 2006.

GURGEL, A. et al. Blending and Reusing Rules for Architectural

Degradation Prevention. Proceedings of the 13th International Conference on

Modularity. Anais...: MODULARITY ’14.New York, NY, USA: ACM,

2014Disponível em: <http://doi.acm.org/10.1145/2577080.2577087>

HALFOND, W. G. J.; ANAND, S.; ORSO, A. Precise interface

identification to improve testing and analysis of web applications. Proceedings

of the eighteenth international symposium on Software testing and analysis.

Anais...2009

HALFOND, W. G. J.; ORSO, A. Improving test case generation for web

applications using automated interface discovery. Proceedings of the the 6th

joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering. Anais...2007

HARTLEY, D. Chapter 1 - What Is SQL Injection? In: CLARKE, J. (Ed.). .

SQL Injection Attacks and Defense (Second Edition). Second Edi ed. Boston:

Syngress, 2012. p. 1–25.

HECKMAN, S.; WILLIAMS, L. A systematic literature review of

actionable alert identification techniques for automated static code analysis.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 100

Information and Software Technology, v. 53, n. 4, p. 363–387, 2011.

HUANG, S.; TILLEY, S. Towards a documentation maturity model.

Proceedings of the 21st annual international conference on Documentation.

Anais...2003

HUYNH, T.; MILLER, J. Further investigations into evaluating website

reliability. 2005 International Symposium on Empirical Software Engineering

(ISESE), Proceedings. Anais...345 E 47TH ST, NEW YORK, NY 10017 USA:

IEEE, 2005

HUYNH, T.; MILLER, J. Another viewpoint on “evaluating web software

reliability based on workload and failure data extracted from server logs”.

Empirical Software Engineering, v. 14, n. 4, p. 371–396, 2009.

ISO, I. E. C. IEEE, Systems and Software Engineering--Vocabulary.

ISO/IEC/IEEE 24765: 2010 (E)) Piscataway, NJ: IEEE computer society,

Tech. Rep., 2010.

JAFFAL, W.; TIAN, J. Defect Analysis and Reliability Assessment for

Transactional Web Applications. Software Reliability Engineering Workshops

(ISSREW), 2014 IEEE International Symposium on. Anais...nov. 2014Disponível

em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6983847>

JEDLITSCHKA, A.; CIOLKOWSKI, M.; PFAHL, D. Reporting

experiments in software engineering. In: Guide to advanced empirical software

engineering. [s.l.] Springer, 2008. p. 201–228.

JOHNSON, B. et al. Why don’t software developers use static analysis

tools to find bugs? 2013 35th International Conference on Software Engineering

(ICSE). Anais...IEEE, maio 2013Disponível em:

<http://ieeexplore.ieee.org/document/6606613/>

JONES, C.; BONSIGNOUR, O. The economics of software quality. [s.l.]

Addison-Wesley Professional, 2011.

KALINOWSKI, M.; CARD, D. N.; TRAVASSOS, G. H. Evidence-Based

Guidelines to Defect Causal Analysis. IEEE Software, v. 29, n. 4, p. 16–18, jul.

2012.

KALLEPALLI, C.; TIAN, J. Measuring and modeling usage and reliability

for statistical web testing. IEEE Transactions on Software Engineering, v. 27,

n. 11, p. 1023–1036, 2001.

LI, Y.-F.; DAS, P. K.; DOWE, D. L. Two decades of Web application

testing-A survey of recent advances. Information Systems, v. 43, p. 20–54, 2014.

MA, L.; TIAN, J. Web error classification and analysis for reliability

improvement. Journal of Systems and Software, v. 80, n. 6, p. 795–804, 2007.

MUSKE, T.; SEREBRENIK, A. Survey of approaches for handling static

analysis alarms. Source Code Analysis and Manipulation (SCAM), 2016 IEEE

16th International Working Conference on. Anais...2016

NELSON, E. Estimating software reliability from test data.

Microelectronics Reliability, v. 17, n. 1, p. 67–73, 1978.

PETROSKI, H.; BARATTA, A. J. To Engineer is Humam—The Role of

Failure in Successful Design. The Physics Teacher, 1988.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 101

SEAMAN, C. B. Qualitative methods in empirical studies of software

engineering. IEEE Transactions on Software Engineering, v. 25, n. 4, p. 557–

572, 1999.

SHAH, H. B.; GÖRG, C.; HARROLD, M. J. Understanding exception

handling: Viewpoints of novices and experts. IEEE Transactions on Software

Engineering, v. 2, p. 150–161, 2010.

SHAH, H.; GÖRG, C.; HARROLD, M. J. Visualization of exception

handling constructs to support program understanding. Proceedings of the 4th

ACM symposium on Software visuallization - SoftVis ’08, p. 19–28, 2008.

SHULL, F.; CARVER, J.; TRAVASSOS, G. H. An empirical

methodology for introducing software processes. ACM SIGSOFT Software

Engineering Notes. Anais...2001

SINGER, J. Practices of software maintenance. Software Maintenance,

1998. Proceedings., International Conference on. Anais...1998

SOHAN, S. M.; ANSLOW, C.; MAURER, F. SpyREST: Automated

RESTful API Documentation Using an HTTP Proxy Server (N). 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE).

Anais...IEEE, nov. 2015Disponível em:

<http://ieeexplore.ieee.org/document/7372015/>

SONARSOURCE. SonarQube. Disponível em:

<https://www.sonarqube.org/>. Acesso em: 20 jul. 2018.

SOUSA, M. J. C.; MOREIRA, H. M. A survey on the software

maintenance process. Software Maintenance, 1998. Proceedings., International

Conference on. Anais...1998

SOUZA, S. C. B. DE; ANQUETIL, N.; OLIVEIRA, K. M. DE. Which

documentation for software maintenance? Journal of the Brazilian Computer

Society, v. 12, n. 3, p. 31–44, 2006.

TERRA, R. et al. A recommendation system for repairing violations

detected by static architecture conformance checking. Software - Practice and

Experience, v. 45, n. 3, p. 315–342, 2015.

TERRA, R.; VALENTE, M. T. A dependency constraint language to

manage object-oriented software architectures. Software: Practice and

Experience, v. 39, n. 12, p. 1073–1094, 2009.

TIAN, J. et al. Evaluating Web software reliability based on workload and

failure data extracted from server logs. Software Engineering, IEEE

Transactions on, v. 30, n. 11, p. 754–769, nov. 2004.

VITALJOB SOFTWARE. inFinance. Disponível em:

<http://www.infinance.com.br/>. Acesso em: 20 jul. 2018.

WIERINGA, R. Design Science Methodology for Information Systems

and Software Engineering. [s.l: s.n.].

WOHLIN, C. et al. Experimentation in Software Engineering. [s.l.]

Springer Publishing Company, Incorporated, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix A – Consent and Characterization Form

Consent Form

I declare to be over 18 years old and that I agree to participate in a study. This

study aims at evaluating the acceptability and difficulty of application of patter-

driven maintenance method.

The procedure

I understand that I will conduct an application of patter-driven maintenance

method. The researchers will conduct the study consisting of collection, analysis

and reporting of the exercise data. I understand that I have no obligation to

contribute with information about my performance in this exercise and that I can

request the removal of my experiment results at any time. I also understand that

when data are collected and analyzed, my name will be removed from the data

and it will not be used at any moment during the analysis or when the results are

presented.

Confidentiality

All information collected in this study is confidential and my name won't be

identified at any time. Similarly, I agree to maintain confidentiality of the

requested tasks and documents, which are part of the experiment.

Benefits, Freedom to Quit

I understand that I am free to ask questions at any time or to request to not include

my information in this study. I understand that I am participating in the empirical

study by my own free will with the aim to contribute to the advancement of

software engineering.

Name (capital letters):___

Signature:__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 103

Characterization Form

Name:__

Level(B.Sc/Ms.c/D.Sc.)______

1) What is your experience with software development? (More than one

option can be selected. Specify, next to the chosen option, how long the

experience lasted)

▢ I’ve never developed software

▢ I’ve been developing for my own use _________

▢ I’ve been developing as team member, related to a course_______

▢ I’ve been developing as team member, in industry _________

2) What is your experience with software maintenance? (More than one

option can be selected. Specify, next to the chosen option, how long the

experience lasted)

▢ I’ve never maintained software

▢ I’ve been maintaining for my own use _________

▢ I’ve been maintaining as team member, related to a course_______

▢ I’ve been maintaining as team member, in industry _________

3) Please, select for each topic the level of your experience following the 5

points scale (look at the subtitle):

Subtitle:

1 = No experience

2 = I studied in a classroom or in a book

3 = I actively practiced in a classroom project

4 = I used it in a project in industry

5 = I used it in several projects in industry

Experience Project

Java 1 2 3 4 5

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 104

General experience with JEE programming (e.g., JSP, Servlets,

EL, JSTL, JPA)

1 2 3 4 5

Experience reading java error logs (e.g., stack traces) 1 2 3 4 5

Experience inspecting source code for finding bugs 1 2 3 4 5

Experience programming static analysis rules (rules for alerting

defects, such as linters)

1 2 3 4 5

4) How do you rate your English reading and comprehension skills?

▢ Basic

▢ Intermediate

▢ Advanced

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix B – Error Log of SisGEE

ERROR 2018-09-02 16:22:53,242 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-81] Exception não tratada no Filter

java.lang.NumberFormatException: For input string: ""

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

 at java.lang.Integer.parseInt(Integer.java:580)

 at java.lang.Integer.parseInt(Integer.java:615)

 at

br.cefetrj.sisgee.view.termoaditivo.BuscaTermoAditivoServlet.doPost(BuscaTermoAditivoServlet.java:49)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:660)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:37)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

ERROR 2018-07-02 18:30:00,695 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-85] Exception não tratada no Filter

java.lang.ClassCastException: java.lang.Double cannot be cast to java.lang.Float

 at

br.cefetrj.sisgee.view.termoestagio.IncluirTermoEstagioServlet.service(IncluirTermoEstagioServlet.java:60)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:712)

 at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:459)

 at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:384)

 at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:312)

 at

br.cefetrj.sisgee.view.termoestagio.FormTermoEstagioServlet.doPost(FormTermoEstagioServlet.java:763)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:660)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 106

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:37)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

ERROR 2018-10-13 17:10:45,087 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-1] Exception não tratada no Filter

java.lang.NumberFormatException: For input string: ""

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

 at java.lang.Integer.parseInt(Integer.java:592)

 at java.lang.Integer.parseInt(Integer.java:615)

 at

br.cefetrj.sisgee.view.termoaditivo.VisualizarTermoEAditivo.doGet(VisualizarTermoEAditivo.java:43)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:634)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:37)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

ERROR 2018-09-24 10:42:01,436 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-17] Exception não tratada no Filter

java.lang.NullPointerException

 at br.cefetrj.sisgee.view.convenio.RenovarConvenioServlet.doGet(RenovarConvenioServlet.java:44)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:634)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:37)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 107

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

ERROR 2018-10-13 17:29:19,662 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-9] Exception não tratada no Filter

java.lang.NullPointerException

 at

br.cefetrj.sisgee.view.termoaditivo.VisualizarTermoEAditivo.doGet(VisualizarTermoEAditivo.java:50)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:634)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:37)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

ERROR 2018-07-03 00:00:20,057 br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter [http-nio-

8080-exec-19] Exception não tratada no Filter

org.apache.jasper.JasperException: /index.jsp (line: [4], column: [1]) File [import_head.jspf] not found

 at org.apache.jasper.compiler.DefaultErrorHandler.jspError(DefaultErrorHandler.java:42)

 at org.apache.jasper.compiler.ErrorDispatcher.dispatch(ErrorDispatcher.java:292)

 at org.apache.jasper.compiler.ErrorDispatcher.jspError(ErrorDispatcher.java:98)

 at org.apache.jasper.compiler.Parser.processIncludeDirective(Parser.java:345)

 at org.apache.jasper.compiler.Parser.parseIncludeDirective(Parser.java:380)

 at org.apache.jasper.compiler.Parser.parseDirective(Parser.java:481)

 at org.apache.jasper.compiler.Parser.parseFileDirectives(Parser.java:1797)

 at org.apache.jasper.compiler.Parser.parse(Parser.java:141)

 at org.apache.jasper.compiler.ParserController.doParse(ParserController.java:244)

 at org.apache.jasper.compiler.ParserController.parseDirectives(ParserController.java:127)

 at org.apache.jasper.compiler.Compiler.generateJava(Compiler.java:202)

 at org.apache.jasper.compiler.Compiler.compile(Compiler.java:385)

 at org.apache.jasper.compiler.Compiler.compile(Compiler.java:362)

 at org.apache.jasper.compiler.Compiler.compile(Compiler.java:346)

 at org.apache.jasper.JspCompilationContext.compile(JspCompilationContext.java:603)

 at org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:369)

 at org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:386)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 108

 at org.apache.jasper.servlet.JspServlet.service(JspServlet.java:330)

 at javax.servlet.http.HttpServlet.service(HttpServlet.java:741)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:231)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at br.cefetrj.sisgee.view.filters.TodasRequisicoesFilter.doFilter(TodasRequisicoesFilter.java:42)

 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:193)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:166)

 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:199)

 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:96)

 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:494)

 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:139)

 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92)

 at org.apache.catalina.valves.AbstractAccessLogValve.invoke(AbstractAccessLogValve.java:651)

 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:87)

 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:343)

 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:412)

 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:66)

 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:754)

 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1385)

 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:49)

 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)

 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)

 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61)

 at java.lang.Thread.run(Thread.java:748)

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix C – Forms of Task 1 – Failure Analysis and
Defect Pattern Identification – Pilot Version

Task 1 Description

Together with this task description you received the following documents:

• A JEE error log (stack traces) of a system

• A system source code that generated the error log.

You are asked to inspect the software source code, searching for defect patterns,

e.g., defects that occurred because of the same cause.

While doing so, please consider:

• This is an individual work and discussions with colleagues are not

allowed.

After finishing this task please upload this document using the following link.

https://goo.gl/forms/YIiMRf1dAvbEVFdc2

Thank you very much for your participation!

https://goo.gl/forms/YIiMRf1dAvbEVFdc2
DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 110

Defect Pattern Reporting Form

Name: __

Start time: ______

End time: ______

Please remember also registering the start and end time of any breaks you

might have taken during the exercise.

Failure List

ID File Name Line Exception Type Error Message

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 111

Defect Patterns List

Defect Name

Description

Exception Type and

Failure Message

Parameters in Failure

Message

Example of Failure

Message

Class and method of

throw

Defect Characterization

Defect Code Example

Fixed Code Example

Defect Name

Description

Failure Message

Parameters in Failure

Message

Example of Failure

Message

Class and method of

throw

Defect Characterization

Defect Code Example

Fixed Code Example

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 112

Follow-up Questionnaire Task1

Name:__

1) Briefly describe your strategy for detecting defect patterns:

__

__

__

__

__

__

2) Did you consider the time sufficient to conclude your task (Yes/No):

If No, please explain your answer:
__

__

__

__

__

__

3) Confidence in the defect patterns reported.

▢ Not confident.

▢ Little confident.

▢ Confident.

▢ Largely confident.

▢ Completely confident.

4) How easy was it to perform the task.

▢ Very hard.

▢ Hard.

▢ Normal.

▢ Easy.

▢ Very easy.

5) What were the difficulties found during the task?

__

__

__

__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix D – Forms of Task1 – Failure Analysis and Defect
Pattern Identification – Groups A and B Version

Task 1 Description

Together with this task description you received the following documents:

• A JEE error log (stack traces) of a system

• A system source code that generated the error log.

You are asked to inspect the software source code, searching for defect patterns,

e.g., defects that occurred because of the same cause.

While doing so, please consider:

• This is an individual work and discussions with colleagues are not

allowed.

Thank you very much for your participation!

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 114

Defect Pattern Reporting Form

Name: __

Start time: ______

End time: ______

Please remember also registering the start and end time of any breaks you

might have taken during the exercise.

Failure List

ID File Name Line Exception Type Error Message

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 115

Defect Patterns List

Defect Name

Description

Exception Type and

Failure Message

Defect Pattern

Fixed Code Pattern

Defect Name

Description

Exception Type and

Failure Message

Defect Pattern

Fixed Code Pattern

Defect Name

Description

Exception Type and

Failure Message

Defect Pattern

Fixed Code Pattern

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 116

Follow-up Questionnaire Task1

Name:__

1) Briefly describe your strategy for detecting defect patterns:

__

__

__

__

__

__

2) Did you consider the time sufficient to conclude your task (Yes/No):

If No, please explain your answer:
__

__

__

__

__

__

3) Confidence in the defect patterns reported.

▢ Not confident.

▢ Little confident.

▢ Confident.

▢ Largely confident.

▢ Completely confident.

4) How easy was it to perform the task.

▢ Very hard.

▢ Hard.

▢ Normal.

▢ Easy.

▢ Very easy.

5) What were the difficulties found during the task?

__

__

__

__

__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix E – Forms of Task 2 – Static Analysis Rule
Programming

Task 2 Description

Together with this task description you received the following documents:

• A defect pattern documentation

• A system source code that contains instances of that defect pattern.

You are asked to program a static analysis rule that locate the instances of the

defect pattern.

While doing so, please consider:

• This is an individual work and discussions with colleagues are not

allowed.

After finishing this task please upload this document using the following link.

https://goo.gl/forms/jY3vKLy4RpouQ6Bi2

Thank you very much for your participation!

https://goo.gl/forms/jY3vKLy4RpouQ6Bi2
DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 118

Static Analysis Rule Programming Reporting Form

Name: __

Inspection start time: ______

Inspection end time: ______

Please remember also registering the start and end time of any breaks you

might have taken during the exercise.

Your source code enters here:

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 119

Follow-up Questionnaire Task2

Name:__

1) Briefly describe your strategy for programming a static analysis rule:

__

__

__

__

__

__

2) Did you consider the time sufficient to conclude your task (Yes/No):

If No, please explain your answer:
__

__

__

__

__

__

3) Confidence in the static analysis rule programmed.

▢ Not confident.

▢ Little confident.

▢ Confident.

▢ Largely confident.

▢ Completely confident.

4) How easy was it to perform the task.

▢ Very hard.

▢ Hard.

▢ Normal.

▢ Easy.

▢ Very easy.

5) What were the difficulties found during the task?

__

__

__

__

__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix F – Forms of Task 3 – Rule Evaluation and
Context Analysis – Pilot Version

Task 3 Description

Together with this task description you received the following documents:

• A defect pattern documentation

• A list of defect candidates of this defect pattern.

• A system source code that contains the defect candidates.

You are asked to inspect the defect candidates in source code to confirm if they

are defects, identify the contexts of false positives if needed, and calculate the

precision and recall of the rule and its contexts.

While doing so, please consider:

• This is an individual work and discussions with colleagues are not

allowed.

After finishing this task please upload this document using the following link.

https://goo.gl/forms/umoSposMgAqFo2uq1

Thank you very much for your participation!

https://goo.gl/forms/umoSposMgAqFo2uq1
DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 121

Defect Pattern Reporting Form

Name: __

Start time: ______

End time: ______

Please remember also registering the start and end time of any breaks you

might have taken during the exercise.

Defect Candidate List

 Alerted

Timestamp File Line
True

Status

Defect
Pattern

Rule
Ctx1 Ctx2 Ctx3

 PrincipalTermo.java 378

 BuscaTermoAditivoServlet.java 49

 BuscaTermoAditivoServlet.java 54

 FormTermoAditivoServlet.java 115

 FormTermoAditivoServlet.java 225

 FormTermoAditivoServlet.java 265

 VerTermoAditivoServlet.java 48

 VisualizarTermoEAditivo.java 43

 VisualizarTermoEAditivo.java 45

 FormTermoEstagioServlet.java 214

 FormTermoEstagioServlet.java 600

 FormTermoEstagioServlet.java 646

 FormTermoEstagioServlet.java 749

 FormTermoRescisaoServlet.java 81

 ValidaUtils.java 232

 ValidaUtils.java 233

Precision and Recall of each Rule

Rule Precision Recall

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 122

Context documentation template

Defect Pattern

Name

Context Name

Non-Exception

Context

Description

Cause

How to Identify the

Context

Context Code

Example

Defect Pattern

Name

Context Name

Non-Exception

Context

Description

Cause

How to Identify the

Context

Context Code

Example

Defect Pattern

Name

Context Name

Non-Exception

Context

Description

Cause

How to Identify the

Context

Context Code

Example

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 123

Follow-up Questionnaire Task3

Name:__

1) Briefly describe your strategy for inspecting the defect candidates:

__

__

__

__

__

__

2) Did you consider the time sufficient to conclude your task (Yes/No):

If No, please explain your answer:
__

__

__

__

__

__

3) Confidence in about defect candidate classification (defect / no defect).

▢ Not confident.

▢ Little confident.

▢ Confident.

▢ Largely confident.

▢ Completely confident.

4) How ease was to perform the task.

▢ Very hard.

▢ Hard.

▢ Normal.

▢ Easy.

▢ Very easy.

5) What were the difficulties found during the task?

__

__

__

__

__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and
Context Analysis – Group A and B Version

Task 3 Description

Together with this task description you received the following documents:

• A defect pattern documentation

• A list of defect candidates of this defect pattern.

• A system source code that contains the defect candidates.

You are asked to inspect the defect candidates in source code to confirm if they

are defects, identify the contexts of false positives if needed, and calculate the

precision and recall of the rule and its contexts.

While doing so, please consider:

• This is an individual work and discussions with colleagues are not

allowed.

Thank you very much for your participation!

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 125

Defect Pattern Reporting Form

Name: __

Start time: ______

End time: ______

Please remember also registering the start and end time of any breaks you

might have taken during the exercise.

Defect Candidate List

File Line
Is

Defect?
Which

Context?

PrincipalTermo.java 378

BuscaTermoAditivoServlet.java 49

BuscaTermoAditivoServlet.java 54

FormTermoAditivoServlet.java 115

FormTermoAditivoServlet.java 225

FormTermoAditivoServlet.java 265

VerTermoAditivoServlet.java 48

VisualizarTermoEAditivo.java 43

VisualizarTermoEAditivo.java 45

FormTermoEstagioServlet.java 214

FormTermoEstagioServlet.java 600

FormTermoEstagioServlet.java 646

FormTermoEstagioServlet.java 749

FormTermoRescisaoServlet.java 81

ValidaUtils.java 232

ValidaUtils.java 233

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 126

Context documentation template

Defect Pattern

Name

Context Name

Context

Description

Context Pattern

Defect Pattern

Name

Context Name

Context

Description

Context Pattern

Defect Pattern

Name

Context Name

Context

Description

Context Pattern

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix G – Forms of Task 3 – Rule Evaluation and Context Analysis – Group A and B
Version 127

Follow-up Questionnaire Task3

Name:__

1) Briefly describe your strategy for inspecting the defect candidates:

__

__

__

__

__

__

2) Did you consider the time sufficient to conclude your task (Yes/No):

If No, please explain your answer:
__

__

__

__

__

__

3) Confidence in about defect candidate classification (defect / no defect).

▢ Not confident.

▢ Little confident.

▢ Confident.

▢ Largely confident.

▢ Completely confident.

4) How ease was to perform the task.

▢ Very hard.

▢ Hard.

▢ Normal.

▢ Easy.

▢ Very easy.

5) What were the difficulties found during the task?

__

__

__

__

__

DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

Appendix H – TAM questionnaire used in the study

Name:

__

After finishing this task please upload this document using the following link.

https://goo.gl/forms/RPsXJrYX5rt1Ttm03

PDM = Pattern-Driven Maintenance

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Using PDM would improve my
performance in preventing
latent unhandled exceptions
(ie., prevent faster)

Using PDM would improve my
productivity in preventing
latent unhandled exceptions
(ie., prevent more and faster)

Using PDM would enhance my
effectiveness in preventing
latent unhandled exceptions
(i.e., prevent more)

I would find PDM useful in
preventing latent unhandled
exceptions

Learning to operate PDM
would be easy for me

I would find it easy to get PDM
to prevent unhandled
exception

It would be easy for me to
become skillful in the use of
PDM

I would find PDM easy to use
I intend to PDM regularly at
work

https://goo.gl/forms/RPsXJrYX5rt1Ttm03
DBD
PUC-Rio - Certificação Digital Nº 1512351/CA

